Jreije Antonio, Griškevičius Paulius, Keršienė Neringa, Laurikaitienė Jurgita, Nedzinskienė Rūta, Adlienė Diana
Department of Physics, Kaunas University of Technology, Studentu Str. 50, 51368 Kaunas, Lithuania.
Department of Mechanical Engineering, Kaunas University of Technology, Studentų Str. 56, 51424 Kaunas, Lithuania.
Polymers (Basel). 2025 Jul 16;17(14):1946. doi: 10.3390/polym17141946.
The exponential growth of plastic production in the healthcare sector and the limited capacity of conventional recycling systems have created a global environmental challenge. Latest 3D printing technologies have the potential to solve this problem by enabling on-demand, localized manufacturing. This study aimed to investigate the mechanical properties of 3D-printed ABS composites with BiO fillers after multiple recycling and irradiation cycles to assess their suitability for creating robust, reusable supporting devices for radiotherapy. Filaments of PLA, ABS, and ABS composites enriched with 5 wt% and 10 wt% BiO were extruded, repeatedly recycled through shredding and re-extrusion up to ten times and irradiated to 70 Gy using a 6 MeV photon beam to simulate clinical radiotherapy conditions. In contrast to PLA, ABS demonstrated better recyclability; however, after ten recycling cycles, its tensile strength declined from 25.1 MPa to 20.9 MPa, and its Young's modulus decreased from 2503.5 MPa to 1410.4 MPa. Incorporation of 5 wt% BiO into ABS significantly improved recyclability and mechanical retention. After ten recycling rounds, an ABS composite containing 5 wt% BiO retained tensile strength of 22.2 MPa, modulus of 1553.9 MPa, and strain at break of 14.4%. In contrast, the composite enforced with 10 wt% BiO showed slightly lower performance, likely due to filler agglomeration. Under irradiation, the ABS-5 wt% BiO composite exhibited minimal additional degradation, maintaining mechanical integrity superior to other materials. These results indicate that ABS-5 wt% BiO is a promising, recyclable material for durable, patient-specific devices in radiotherapy, supporting sustainability in medical manufacturing.
医疗保健领域塑料产量的指数级增长以及传统回收系统的有限能力带来了全球性的环境挑战。最新的3D打印技术有潜力通过实现按需、本地化制造来解决这个问题。本研究旨在调查经过多次回收和辐照循环后含BiO填料的3D打印ABS复合材料的力学性能,以评估其是否适合制造用于放射治疗的坚固、可重复使用的支撑装置。挤出了PLA、ABS以及富含5 wt%和10 wt% BiO的ABS复合材料长丝,通过切碎和再挤出反复回收多达十次,并使用6 MeV光子束辐照至70 Gy以模拟临床放射治疗条件。与PLA相比,ABS表现出更好的可回收性;然而,经过十次回收循环后,其拉伸强度从25.1 MPa降至20.9 MPa,杨氏模量从2503.5 MPa降至1410.4 MPa。在ABS中加入5 wt%的BiO显著提高了可回收性和机械性能保持率。经过十次回收循环后,含5 wt% BiO的ABS复合材料的拉伸强度保持在22.2 MPa,模量为1553.9 MPa,断裂应变率为14.4%。相比之下,含10 wt% BiO的复合材料性能略低,可能是由于填料团聚。在辐照下,ABS-5 wt% BiO复合材料的额外降解最小,保持了优于其他材料的机械完整性。这些结果表明,ABS-5 wt% BiO是一种有前景的、可回收的材料,可用于制造放射治疗中耐用的、针对患者的装置,支持医疗制造的可持续性。