Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
Cell Syst. 2017 Nov 22;5(5):509-517.e3. doi: 10.1016/j.cels.2017.10.002. Epub 2017 Nov 1.
Bacterial resistance mechanisms must cope with transient fast-changing conditions. These systems are often repressed in the absence of the drug, and it is unclear how their regulation can provide a quick response when challenged. Here, we focus on the tet operon, which provides resistance to tetracycline through efflux pump TetA. We show that, somewhat counterintuitively, prompt expression of the TetA repressor TetR is key for cellular survival upon abrupt drug exposure. Tracking individual cells upon exposure, we find that differences in the rate of TetR elevation result in three distinct cell fates: recovery (high rate), death due to excess TetA (intermediate rate), and death from the drug (low rate). A surge of TetR expression optimizes the response by allowing sensitive detection of both the initial rise and the later decline of intracellular drug, avoiding an undesirable overshoot in TetA expression. These results show how regulatory circuits of resistance genes have evolved for optimized dynamics.
细菌耐药机制必须应对瞬息万变的环境条件。在没有药物的情况下,这些系统通常受到抑制,目前尚不清楚它们的调控机制如何在受到挑战时做出快速反应。在这里,我们重点研究 tet 操纵子,该操纵子通过外排泵 TetA 提供对四环素的耐药性。我们发现,有些出人意料的是,在突然接触药物时,TetA 抑制剂 TetR 的迅速表达是细胞存活的关键。在药物暴露过程中跟踪单个细胞,我们发现 TetR 水平升高的速度差异导致了三种不同的细胞命运:恢复(高速度)、由于 TetA 过量而死亡(中等速度)和因药物而死亡(低速度)。TetR 表达的激增通过允许对细胞内药物的初始上升和随后的下降进行敏感检测,优化了反应,避免了 TetA 表达的不必要过冲。这些结果表明,耐药基因的调控回路是如何为优化动力学而进化的。