Suppr超能文献

调控动力学决定了抗生素暴露后细胞的命运。

Regulatory Dynamics Determine Cell Fate following Abrupt Antibiotic Exposure.

机构信息

Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Cell Syst. 2017 Nov 22;5(5):509-517.e3. doi: 10.1016/j.cels.2017.10.002. Epub 2017 Nov 1.

Abstract

Bacterial resistance mechanisms must cope with transient fast-changing conditions. These systems are often repressed in the absence of the drug, and it is unclear how their regulation can provide a quick response when challenged. Here, we focus on the tet operon, which provides resistance to tetracycline through efflux pump TetA. We show that, somewhat counterintuitively, prompt expression of the TetA repressor TetR is key for cellular survival upon abrupt drug exposure. Tracking individual cells upon exposure, we find that differences in the rate of TetR elevation result in three distinct cell fates: recovery (high rate), death due to excess TetA (intermediate rate), and death from the drug (low rate). A surge of TetR expression optimizes the response by allowing sensitive detection of both the initial rise and the later decline of intracellular drug, avoiding an undesirable overshoot in TetA expression. These results show how regulatory circuits of resistance genes have evolved for optimized dynamics.

摘要

细菌耐药机制必须应对瞬息万变的环境条件。在没有药物的情况下,这些系统通常受到抑制,目前尚不清楚它们的调控机制如何在受到挑战时做出快速反应。在这里,我们重点研究 tet 操纵子,该操纵子通过外排泵 TetA 提供对四环素的耐药性。我们发现,有些出人意料的是,在突然接触药物时,TetA 抑制剂 TetR 的迅速表达是细胞存活的关键。在药物暴露过程中跟踪单个细胞,我们发现 TetR 水平升高的速度差异导致了三种不同的细胞命运:恢复(高速度)、由于 TetA 过量而死亡(中等速度)和因药物而死亡(低速度)。TetR 表达的激增通过允许对细胞内药物的初始上升和随后的下降进行敏感检测,优化了反应,避免了 TetA 表达的不必要过冲。这些结果表明,耐药基因的调控回路是如何为优化动力学而进化的。

相似文献

1
Regulatory Dynamics Determine Cell Fate following Abrupt Antibiotic Exposure.
Cell Syst. 2017 Nov 22;5(5):509-517.e3. doi: 10.1016/j.cels.2017.10.002. Epub 2017 Nov 1.
2
Drug delivery dynamics dictate evolution of bacterial antibiotic responses.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf082.
4
Tet 42, a novel tetracycline resistance determinant isolated from deep terrestrial subsurface bacteria.
Antimicrob Agents Chemother. 2008 Dec;52(12):4518-21. doi: 10.1128/AAC.00640-08. Epub 2008 Sep 22.
5
Relation between tetR and tetA expression in tetracycline resistant Escherichia coli.
BMC Microbiol. 2016 Mar 12;16:39. doi: 10.1186/s12866-016-0649-z.
6
Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens.
Appl Environ Microbiol. 2007 Apr;73(7):2199-206. doi: 10.1128/AEM.02511-06. Epub 2007 Feb 16.
8
Mechanisms underlying expression of Tn10 encoded tetracycline resistance.
Annu Rev Microbiol. 1994;48:345-69. doi: 10.1146/annurev.mi.48.100194.002021.
9
Overlapping divergent promoters control expression of Tn10 tetracycline resistance.
Gene. 1983 Aug;23(2):149-56. doi: 10.1016/0378-1119(83)90046-x.

引用本文的文献

1
Drug delivery dynamics dictate evolution of bacterial antibiotic responses.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf082.
3
Common regulatory mutation increases single-cell survival to antibiotic exposures in .
bioRxiv. 2024 Sep 22:2024.09.20.614194. doi: 10.1101/2024.09.20.614194.
5
Dynamics of drug delivery determines course of evolution of antibiotic responses in bacteria.
bioRxiv. 2024 Sep 23:2023.11.29.569327. doi: 10.1101/2023.11.29.569327.
6
Optimal transcriptional regulation of dynamic bacterial responses to sudden drug exposures.
Biophys J. 2022 Nov 1;121(21):4137-4152. doi: 10.1016/j.bpj.2022.09.028. Epub 2022 Sep 26.
7
Nutrient Gradients Mediate Complex Colony-Level Antibiotic Responses in Structured Microbial Populations.
Front Microbiol. 2022 Apr 27;13:740259. doi: 10.3389/fmicb.2022.740259. eCollection 2022.
8
Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions.
Pharmaceuticals (Basel). 2018 Feb 1;11(1):14. doi: 10.3390/ph11010014.

本文引用的文献

1
2
The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria.
Clin Microbiol Rev. 2015 Apr;28(2):337-418. doi: 10.1128/CMR.00117-14.
3
The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria.
Science. 2013 Nov 29;342(6162):1237435. doi: 10.1126/science.1237435.
4
Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance.
Clin Microbiol Rev. 2012 Oct;25(4):661-81. doi: 10.1128/CMR.00043-12.
5
Dynamics of transcription driven by the tetA promoter, one event at a time, in live Escherichia coli cells.
Nucleic Acids Res. 2012 Sep 1;40(17):8472-83. doi: 10.1093/nar/gks583. Epub 2012 Jun 22.
7
Robust growth of Escherichia coli.
Curr Biol. 2010 Jun 22;20(12):1099-103. doi: 10.1016/j.cub.2010.04.045. Epub 2010 May 27.
8
Chemical decay of an antibiotic inverts selection for resistance.
Nat Chem Biol. 2010 Feb;6(2):105-7. doi: 10.1038/nchembio.289. Epub 2010 Jan 10.
9
The role of configuration and coupling in autoregulatory gene circuits.
Mol Microbiol. 2010 Jan;75(2):513-27. doi: 10.1111/j.1365-2958.2009.07011.x. Epub 2009 Dec 16.
10
Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression.
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5123-8. doi: 10.1073/pnas.0809901106. Epub 2009 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验