Suppr超能文献

持续葡萄糖监测措施可用于重症监护病房的血糖控制:一项计算机模拟研究。

Continuous Glucose Monitoring Measures Can Be Used for Glycemic Control in the ICU: An In-Silico Study.

作者信息

Zhou Tony, Dickson Jennifer L, Shaw Geoffrey M, Chase J Geoffrey

机构信息

1 Department of Mechanical Engineering, University of Canterbury, Christchurch, Canterbury, New Zealand.

2 Department of Intensive Care, Christchurch Hospital, Christchurch School of Medicine and Health Science, University of Otago, New Zealand.

出版信息

J Diabetes Sci Technol. 2018 Jan;12(1):7-19. doi: 10.1177/1932296817738791. Epub 2017 Nov 6.

Abstract

BACKGROUND

Continuous glucose monitoring (CGM) technology has become more prevalent in the intensive care unit (ICU), offering potential benefits of increased safety and reduced workload in glycemic control (GC). The drift and higher point accuracy errors of CGM devices over traditional intermittent blood glucose (BG) measures have so far limited their application in the ICU. This study delineates the trade-offs of performance, safety and workload that CGM sensors provide in GC protocols.

METHODS

Clinical data from 236 patients were used for clinically validated virtual trials. A CGM-enabled version of the STAR GC protocol was used to evaluate the use of guard rails and rolling windows. Safety was assessed through percentage of patients who had a severe hypoglycemic episode (BG < 40 mg/dl) as well as percentage of resampled BG < 72 mg/dl. Performance was assessed as percentage of resampled measurements in the 80-126 mg/dl and the 80-144 mg/dl target bands. Workload was measured by number of manual BG measures per day.

RESULTS

CGM-enabled versions of STAR decreased the number of required blood draws by up to 74%, while maintaining performance (76.6% BG measurements in the 80-126 mg/dl range vs 62.8% clinically, 87.9% in the 80-144 mg/dl range vs 83.7% clinically) and maintaining patient safety (1.13% of patients experienced a severe hypoglycemic event vs 0.85% clinically, 1.37% of BG measurements were less than 72 mg/dl vs 0.51% clinically).

CONCLUSION

CGM sensor traces were reproduced in virtual trials to guide GC. Existing GC protocols such as STAR may need to be adjusted only slightly to gain the benefits of the increased temporal measurements of CGM sensors, through which workload may be significantly decreased while maintaining GC performance and safety.

摘要

背景

连续血糖监测(CGM)技术在重症监护病房(ICU)中已变得更为普遍,在血糖控制(GC)方面具有提高安全性和减轻工作量的潜在益处。与传统的间歇性血糖(BG)测量相比,CGM设备的漂移和更高的点准确性误差迄今为止限制了其在ICU中的应用。本研究阐述了CGM传感器在GC方案中所提供的性能、安全性和工作量之间的权衡。

方法

来自236名患者的临床数据用于经过临床验证的虚拟试验。启用CGM的STAR GC方案版本用于评估护栏和滚动窗口的使用情况。通过发生严重低血糖事件(BG < 40 mg/dl)的患者百分比以及重新采样的BG < 72 mg/dl的百分比来评估安全性。性能评估为重新采样测量值在80 - 126 mg/dl和80 - 144 mg/dl目标范围内的百分比。工作量通过每天手动BG测量的次数来衡量。

结果

启用CGM的STAR版本减少了高达74%的所需采血次数,同时保持了性能(80 - 126 mg/dl范围内的BG测量值为76.6%,而临床为62.8%;80 - 144 mg/dl范围内为87.9%,而临床为83.7%)并保持了患者安全(1.13%的患者经历了严重低血糖事件,而临床为0.85%;1.37%的BG测量值低于72 mg/dl,而临床为0.51%)。

结论

在虚拟试验中重现了CGM传感器轨迹以指导GC。现有的GC方案,如STAR,可能仅需进行轻微调整,以获得CGM传感器增加的时间测量的益处,通过这种方式,在保持GC性能和安全性的同时,工作量可能会显著减少。

相似文献

1
Continuous Glucose Monitoring Measures Can Be Used for Glycemic Control in the ICU: An In-Silico Study.
J Diabetes Sci Technol. 2018 Jan;12(1):7-19. doi: 10.1177/1932296817738791. Epub 2017 Nov 6.
2
Continuous glucose monitors and the burden of tight glycemic control in critical care: can they cure the time cost?
J Diabetes Sci Technol. 2010 May 1;4(3):625-35. doi: 10.1177/193229681000400317.
3
Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.
Diabetes Technol Ther. 2015 Mar;17(3):177-86. doi: 10.1089/dia.2014.0272. Epub 2014 Dec 1.
4
Stochastic targeted (STAR) glycemic control: design, safety, and performance.
J Diabetes Sci Technol. 2012 Jan 1;6(1):102-15. doi: 10.1177/193229681200600113.
5
Nutrition delivery, workload and performance in a model-based ICU glycaemic control system.
Comput Methods Programs Biomed. 2018 Nov;166:9-18. doi: 10.1016/j.cmpb.2018.09.005. Epub 2018 Sep 11.
6
Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.
J Diabetes Sci Technol. 2018 Jan;12(1):90-104. doi: 10.1177/1932296817719089. Epub 2017 Jul 14.
7
Continuous glucose monitoring in newborn infants: how do errors in calibration measurements affect detected hypoglycemia?
J Diabetes Sci Technol. 2014 May;8(3):543-50. doi: 10.1177/1932296814524857. Epub 2014 Feb 27.
9
STAR development and protocol comparison.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3357-64. doi: 10.1109/TBME.2012.2214384. Epub 2012 Aug 23.
10
Reliability of real-time continuous glucose monitoring in infants.
Pediatr Int. 2019 Oct;61(10):1001-1006. doi: 10.1111/ped.13961. Epub 2019 Oct 17.

引用本文的文献

1
Enhancing Type 2 Diabetes Care With CGM Integration: Insights From an Italian Expert Group.
Diabetes Metab Res Rev. 2025 Jul;41(5):e70059. doi: 10.1002/dmrr.70059.
2
Wearable devices for patient monitoring in the intensive care unit.
Intensive Care Med Exp. 2025 Feb 27;13(1):26. doi: 10.1186/s40635-025-00738-8.
3
Should continuous glucose monitoring be used to manage neonates at risk of hypoglycaemia?
Front Pediatr. 2023 Mar 21;11:1115228. doi: 10.3389/fped.2023.1115228. eCollection 2023.
4
Optimising mechanical ventilation through model-based methods and automation.
Annu Rev Control. 2019;48:369-382. doi: 10.1016/j.arcontrol.2019.05.001. Epub 2019 May 7.
5
Estimating Enhanced Endogenous Glucose Production in Intensive Care Unit Patients with Severe Insulin Resistance.
J Diabetes Sci Technol. 2022 Sep;16(5):1208-1219. doi: 10.1177/19322968211018260. Epub 2021 Jun 2.
6
Blood glucose and subcutaneous continuous glucose monitoring in critically ill horses: A pilot study.
PLoS One. 2021 Feb 24;16(2):e0247561. doi: 10.1371/journal.pone.0247561. eCollection 2021.
7
Assessment of Glycemic Control Protocol (STAR) Through Compliance Analysis Amongst Malaysian ICU Patients.
Med Devices (Auckl). 2020 Jun 4;13:139-149. doi: 10.2147/MDER.S231856. eCollection 2020.
8
Risk and reward: extending stochastic glycaemic control intervals to reduce workload.
Biomed Eng Online. 2020 Apr 29;19(1):26. doi: 10.1186/s12938-020-00771-6.
9
Intermittent Use of Continuous Glucose Monitoring: Expanding the Clinical Value of CGM.
J Diabetes Sci Technol. 2021 May;15(3):684-694. doi: 10.1177/1932296820905577. Epub 2020 Feb 17.
10
Fifteen-minute Frequency of Glucose Measurements and the Use of Threshold Alarms: Impact on Mitigating Dysglycemia in Critically Ill Patients.
J Diabetes Sci Technol. 2021 Mar;15(2):279-286. doi: 10.1177/1932296819886917. Epub 2019 Nov 19.

本文引用的文献

1
Continuous glucose monitoring in the ICU: clinical considerations and consensus.
Crit Care. 2017 Jul 31;21(1):197. doi: 10.1186/s13054-017-1784-0.
2
Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.
J Diabetes Sci Technol. 2018 Jan;12(1):90-104. doi: 10.1177/1932296817719089. Epub 2017 Jul 14.
3
Untangling glycaemia and mortality in critical care.
Crit Care. 2017 Jun 24;21(1):152. doi: 10.1186/s13054-017-1725-y.
4
Generalisability of a Virtual Trials Method for Glycaemic Control in Intensive Care.
IEEE Trans Biomed Eng. 2018 Jul;65(7):1543-1553. doi: 10.1109/TBME.2017.2686432. Epub 2017 Mar 24.
5
Results of a multicenter prospective pivotal trial of the first inline continuous glucose monitor in critically ill patients.
J Trauma Acute Care Surg. 2017 Jun;82(6):1049-1054. doi: 10.1097/TA.0000000000001444.
6
A comparison of two insulin infusion protocols in the medical intensive care unit by continuous glucose monitoring.
Ann Intensive Care. 2016 Dec;6(1):115. doi: 10.1186/s13613-016-0214-9. Epub 2016 Nov 22.
9
Glucose Control in the ICU: A Continuing Story.
J Diabetes Sci Technol. 2016 Nov 1;10(6):1372-1381. doi: 10.1177/1932296816648713. Print 2016 Nov.
10
Safety, efficacy and clinical generalization of the STAR protocol: a retrospective analysis.
Ann Intensive Care. 2016 Dec;6(1):24. doi: 10.1186/s13613-016-0125-9. Epub 2016 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验