Suppr超能文献

TLR8 联合 TLR3 或 TLR4 激动剂增强了 DC-NK 驱动的效应 Tc1 细胞。

TLR8 combined withTLR3 or TLR4 agonists enhances DC-NK driven effector Tc1 cells.

机构信息

Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA.

Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA.

出版信息

Immunol Lett. 2018 Jan;193:58-66. doi: 10.1016/j.imlet.2017.10.015. Epub 2017 Dec 1.

Abstract

BACKGROUND

Most current prophylactic vaccines confer protection primarily through humoral immunity. Indeed, aluminum salts which have been widely used as adjuvants in vaccines primarily enhance Th2-driven antibody responses. Therefore, new vaccines formulation is moving toward a careful selection of adjuvants that also elicit significant Th1 or Tc1 responses. Several TLR agonists have been tested as potential new adjuvants in clinical and preclinical studies with some efficacy. These studies suggest that combining more than one of TLR ligands enhances the magnitude of immune responses to cancer and infectious disease.

OBJECTIVES

In order to evaluate the synergistic effect of TLR agonists for effective induction of cellular immunity, we investigated the effects of single and/or combined TLR agonists on monocyte-derived DC maturation, DC-NK crosstalk and ultimately naïve T cells polarization into effector T cells.

RESULTS

Among the adjuvants tested, we found that TLR3, TLR4, TLR7/8 and TLR8 agonists were the most effective adjuvants to increase the expression levels of antigen-presenting, co-stimulatory molecules and production of cytokines by maturing DCs. When combined, TLR3+8 and TLR4+8 synergistically optimized DC maturation and IFN-γ secretion from NK cells co-cultured with DCs. Interestingly, co-culture of DC-NK-T treated with aluminum salt produced the highest percentage of effector memory CFSE-CCR7- Th1 cells whereas TLR3+8 and TLR4+8 treated co-cultures produced the highest percentage of effector memory CFSE-CCR7- Tc1 cells producing IFN-γ. Finally, while both TLR3+8 or TLR4+8 treated co-cultures generated similar frequency of Th1 and Tc1 effector cells, the effector cells from the latter co-culture produced quantitatively more IFN-γ in the supernatant.

CONCLUSION

Our data indicate that if in need of an enhanced DC-NK mediated cellular immunity one may select TLR agonists with defined synergistic effects.

摘要

背景

大多数当前的预防性疫苗主要通过体液免疫提供保护。事实上,已广泛用作疫苗佐剂的铝盐主要增强了 Th2 驱动的抗体反应。因此,新疫苗制剂的开发方向是精心选择佐剂,这些佐剂还可以引起显著的 Th1 或 Tc1 反应。一些 TLR 激动剂已在临床前研究中作为潜在的新型佐剂进行了测试,具有一定的疗效。这些研究表明,联合使用多种 TLR 配体可增强针对癌症和传染病的免疫反应的幅度。

目的

为了评估 TLR 激动剂对有效诱导细胞免疫的协同作用,我们研究了单一和/或组合 TLR 激动剂对单核细胞衍生的 DC 成熟、DC-NK 串扰以及最终幼稚 T 细胞向效应 T 细胞极化的影响。

结果

在所测试的佐剂中,我们发现 TLR3、TLR4、TLR7/8 和 TLR8 激动剂是最有效的佐剂,可增加成熟 DC 表达抗原呈递、共刺激分子的水平和细胞因子的产生。联合使用时,TLR3+8 和 TLR4+8 可协同优化 DC 成熟和与 DC 共培养的 NK 细胞产生 IFN-γ。有趣的是,用铝盐处理的 DC-NK-T 共培养物产生了最高比例的效应记忆 CFSE-CCR7- Th1 细胞,而 TLR3+8 和 TLR4+8 处理的共培养物则产生了最高比例的产生 IFN-γ的效应记忆 CFSE-CCR7- Tc1 细胞。最后,虽然 TLR3+8 或 TLR4+8 处理的共培养物均产生了相似频率的 Th1 和 Tc1 效应细胞,但后者共培养物产生的 IFN-γ在培养上清液中的量更多。

结论

我们的数据表明,如果需要增强 DC-NK 介导的细胞免疫,则可以选择具有明确定义协同作用的 TLR 激动剂。

相似文献

1
TLR8 combined withTLR3 or TLR4 agonists enhances DC-NK driven effector Tc1 cells.
Immunol Lett. 2018 Jan;193:58-66. doi: 10.1016/j.imlet.2017.10.015. Epub 2017 Dec 1.
2
Combination of TLR8 and TLR4 agonists reduces the degrading effects of nicotine on DC-NK mediated effector T cell generation.
Int Immunopharmacol. 2018 Aug;61:54-63. doi: 10.1016/j.intimp.2018.05.012. Epub 2018 May 24.
3
Combined Toll-like receptor agonists synergistically increase production of inflammatory cytokines in human neonatal dendritic cells.
Hum Immunol. 2007 Oct;68(10):813-22. doi: 10.1016/j.humimm.2007.08.001. Epub 2007 Aug 29.
5
Generation of Th1-polarizing dendritic cells using the TLR7/8 agonist CL075.
J Immunol. 2010 Jul 1;185(1):738-47. doi: 10.4049/jimmunol.1000060. Epub 2010 May 28.
7
The genetic background influences the cellular and humoral immune responses to vaccines.
Clin Exp Immunol. 2016 Nov;186(2):190-204. doi: 10.1111/cei.12841. Epub 2016 Aug 16.
8
Toll like receptor agonists augment HPV 11 E7-specific T cell responses by modulating monocyte-derived dendritic cells.
Arch Dermatol Res. 2010 Jan;302(1):57-65. doi: 10.1007/s00403-009-0976-0. Epub 2009 Jul 4.
9
Type 1 cytokine/chemokine production by mouse NK cells following activation of their TLR/MyD88-mediated pathways.
Int Immunol. 2007 Mar;19(3):311-20. doi: 10.1093/intimm/dxl148. Epub 2007 Feb 7.
10
Ampligen: a potential toll-like 3 receptor adjuvant for immunotherapy of cancer.
Vaccine. 2009 May 26;27(25-26):3401-4. doi: 10.1016/j.vaccine.2009.01.071. Epub 2009 Feb 5.

引用本文的文献

1
The Role of Toll-like Receptor Agonists and Their Nanomedicines for Tumor Immunotherapy.
Pharmaceutics. 2022 Jun 10;14(6):1228. doi: 10.3390/pharmaceutics14061228.
2
Human lung cDC1 drive increased perforin-mediated NK cytotoxicity in chronic obstructive pulmonary disease.
Am J Physiol Lung Cell Mol Physiol. 2021 Dec 1;321(6):L1183-L1193. doi: 10.1152/ajplung.00322.2020. Epub 2021 Oct 27.
3
The impact of immuno-aging on SARS-CoV-2 vaccine development.
Geroscience. 2021 Feb;43(1):31-51. doi: 10.1007/s11357-021-00323-3. Epub 2021 Feb 11.
6
RNA Sensing of and Its Impact on TB Vaccination Strategies.
Vaccines (Basel). 2020 Feb 4;8(1):67. doi: 10.3390/vaccines8010067.
9
Significance and Role of Pattern Recognition Receptors in Malignancy.
Arch Immunol Ther Exp (Warsz). 2019 Jun;67(3):133-141. doi: 10.1007/s00005-019-00540-x. Epub 2019 Apr 11.
10
Dendritic cells pulsed with placental gp96 promote tumor-reactive immune responses.
PLoS One. 2019 Jan 31;14(1):e0211490. doi: 10.1371/journal.pone.0211490. eCollection 2019.

本文引用的文献

1
NK-DC Crosstalk in Immunity to Microbial Infection.
J Immunol Res. 2016;2016:6374379. doi: 10.1155/2016/6374379. Epub 2016 Dec 20.
3
Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands.
Vaccines (Basel). 2014 Apr 25;2(2):323-53. doi: 10.3390/vaccines2020323.
4
The 3 major types of innate and adaptive cell-mediated effector immunity.
J Allergy Clin Immunol. 2015 Mar;135(3):626-35. doi: 10.1016/j.jaci.2014.11.001. Epub 2014 Dec 18.
5
Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12294-9. doi: 10.1073/pnas.1400478111. Epub 2014 Aug 18.
7
Toll-like receptors and their crosstalk with other innate receptors in infection and immunity.
Immunity. 2011 May 27;34(5):637-50. doi: 10.1016/j.immuni.2011.05.006.
8
Use of defined TLR ligands as adjuvants within human vaccines.
Immunol Rev. 2011 Jan;239(1):178-96. doi: 10.1111/j.1600-065X.2010.00978.x.
9
Vaccine adjuvants: putting innate immunity to work.
Immunity. 2010 Oct 29;33(4):492-503. doi: 10.1016/j.immuni.2010.10.002.
10
Effect of multiple activation stimuli on the generation of Th1-polarizing dendritic cells.
Hum Immunol. 2011 Jan;72(1):24-31. doi: 10.1016/j.humimm.2010.10.004. Epub 2010 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验