Suppr超能文献

用于维持生理平衡和愉悦进食的重叠脑回路。

Overlapping Brain Circuits for Homeostatic and Hedonic Feeding.

机构信息

Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Cell Metab. 2018 Jan 9;27(1):42-56. doi: 10.1016/j.cmet.2017.09.021. Epub 2017 Nov 5.

Abstract

Central regulation of food intake is a key mechanism contributing to energy homeostasis. Many neural circuits that are thought to orchestrate feeding behavior overlap with the brain's reward circuitry both anatomically and functionally. Manipulation of numerous neural pathways can simultaneously influence food intake and reward. Two key systems underlying these processes-those controlling homeostatic and hedonic feeding-are often treated as independent. Homeostatic feeding is necessary for basic metabolic processes and survival, while hedonic feeding is driven by sensory perception or pleasure. Despite this distinction, their functional and anatomical overlap implies considerable interaction that is often overlooked. Here, we argue that the neurocircuits controlling homeostatic feeding and hedonic feeding are not completely dissociable given the current data and urge researchers to assess behaviors extending beyond food intake in investigations of the neural control of feeding.

摘要

摄食的中枢调控是能量平衡的关键机制。许多被认为能够调节摄食行为的神经回路在解剖和功能上与大脑的奖励回路重叠。对许多神经通路的操纵可以同时影响食物摄入和奖励。这两个过程的关键系统——控制生理性摄食和享乐性摄食的系统——通常被视为独立的。生理性摄食是基本代谢过程和生存所必需的,而享乐性摄食则是由感觉感知或愉悦驱动的。尽管有这种区别,但它们的功能和解剖重叠意味着存在着经常被忽视的大量相互作用。在这里,我们认为,考虑到目前的数据,控制生理性摄食和享乐性摄食的神经回路并不是完全可分离的,并敦促研究人员在研究摄食的神经控制时,评估超越食物摄入的行为。

相似文献

1
Overlapping Brain Circuits for Homeostatic and Hedonic Feeding.
Cell Metab. 2018 Jan 9;27(1):42-56. doi: 10.1016/j.cmet.2017.09.021. Epub 2017 Nov 5.
2
Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems.
Physiol Behav. 2018 Sep 1;193(Pt B):223-231. doi: 10.1016/j.physbeh.2018.02.011. Epub 2018 Feb 5.
3
Orexins (hypocretins): The intersection between homeostatic and hedonic feeding.
J Neurochem. 2021 Jun;157(5):1473-1494. doi: 10.1111/jnc.15328. Epub 2021 Mar 10.
4
Energy regulatory signals and food reward.
Pharmacol Biochem Behav. 2010 Nov;97(1):15-24. doi: 10.1016/j.pbb.2010.03.002. Epub 2010 Mar 15.
5
The Role of Brain in Energy Balance.
Adv Neurobiol. 2017;19:33-48. doi: 10.1007/978-3-319-63260-5_2.
6
Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back.
Front Neurosci. 2018 Apr 24;12:271. doi: 10.3389/fnins.2018.00271. eCollection 2018.
7
Dopaminergic Control of the Feeding Circuit.
Endocrinol Metab (Seoul). 2021 Apr;36(2):229-239. doi: 10.3803/EnM.2021.979. Epub 2021 Apr 6.
8
The need to feed: homeostatic and hedonic control of eating.
Neuron. 2002 Oct 10;36(2):199-211. doi: 10.1016/s0896-6273(02)00969-8.
9
The nucleus accumbens shell: a neural hub at the interface of homeostatic and hedonic feeding.
Front Neurosci. 2024 Jul 30;18:1437210. doi: 10.3389/fnins.2024.1437210. eCollection 2024.
10
Hedonic and motivational roles of opioids in food reward: implications for overeating disorders.
Pharmacol Biochem Behav. 2010 Nov;97(1):34-46. doi: 10.1016/j.pbb.2010.05.016. Epub 2010 May 24.

引用本文的文献

1
An unexpected role for the brain in the pathogenesis of diabetic ketoacidosis.
J Clin Invest. 2025 Aug 1;135(15). doi: 10.1172/JCI196357.
3
Regulation of hedonic feeding rhythms by circadian clocks in leptin-receptive neurons.
Mol Metab. 2025 Jul 24;100:102221. doi: 10.1016/j.molmet.2025.102221.
4
The Integrated Function of the Lateral Hypothalamus in Energy Homeostasis.
Cells. 2025 Jul 8;14(14):1042. doi: 10.3390/cells14141042.
6
The gut and heart's role in reward processing.
Front Integr Neurosci. 2025 Jul 2;19:1479923. doi: 10.3389/fnint.2025.1479923. eCollection 2025.
7
Translational models of stress and resilience: An applied neuroscience methodology review.
Neurosci Appl. 2024 Apr 4;3:104064. doi: 10.1016/j.nsa.2024.104064. eCollection 2024.
8
Ventral hippocampus neurons encode meal-related memory.
Nat Commun. 2025 Jun 11;16(1):4898. doi: 10.1038/s41467-025-59687-1.
9
VGluT3 BNST neurons transmit GABA and restrict sucrose consumption.
Mol Metab. 2025 Jun 6;98:102178. doi: 10.1016/j.molmet.2025.102178.
10
Energy state guides reward seeking via an extended amygdala to lateral hypothalamus pathway.
Nat Commun. 2025 May 14;16(1):4474. doi: 10.1038/s41467-025-59686-2.

本文引用的文献

1
Central amygdala circuits modulate food consumption through a positive-valence mechanism.
Nat Neurosci. 2017 Oct;20(10):1384-1394. doi: 10.1038/nn.4623. Epub 2017 Aug 21.
2
Lateral Hypothalamic GABAergic Neurons Encode Reward Predictions that Are Relayed to the Ventral Tegmental Area to Regulate Learning.
Curr Biol. 2017 Jul 24;27(14):2089-2100.e5. doi: 10.1016/j.cub.2017.06.024. Epub 2017 Jul 6.
3
Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus.
Nat Neurosci. 2017 Jul;20(7):934-942. doi: 10.1038/nn.4574. Epub 2017 Jun 5.
4
Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation.
Science. 2017 May 26;356(6340):853-859. doi: 10.1126/science.aam7100.
5
Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion.
J Neurosci. 2017 Jun 21;37(25):6053-6065. doi: 10.1523/JNEUROSCI.0155-17.2017. Epub 2017 May 24.
6
Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors.
Neuron. 2017 Mar 22;93(6):1464-1479.e5. doi: 10.1016/j.neuron.2017.02.034.
7
Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala.
Cell. 2017 Jan 12;168(1-2):311-324.e18. doi: 10.1016/j.cell.2016.12.027.
8
A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH.
Nat Neurosci. 2017 Jan;20(1):42-51. doi: 10.1038/nn.4442. Epub 2016 Nov 21.
9
Hunger-Driven Motivational State Competition.
Neuron. 2016 Oct 5;92(1):187-201. doi: 10.1016/j.neuron.2016.08.032. Epub 2016 Sep 29.
10
Hunger neurons drive feeding through a sustained, positive reinforcement signal.
Elife. 2016 Aug 24;5:e18640. doi: 10.7554/eLife.18640.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验