Suppr超能文献

细菌中自发性突变的来源。

Sources of spontaneous mutagenesis in bacteria.

机构信息

a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA.

b Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.

出版信息

Crit Rev Biochem Mol Biol. 2018 Feb;53(1):29-48. doi: 10.1080/10409238.2017.1394262. Epub 2017 Nov 6.

Abstract

Mutations in an organism's genome can arise spontaneously, that is, in the absence of exogenous stress and prior to selection. Mutations are often neutral or deleterious to individual fitness but can also provide genetic diversity driving evolution. Mutagenesis in bacteria contributes to the already serious and growing problem of antibiotic resistance. However, the negative impacts of spontaneous mutagenesis on human health are not limited to bacterial antibiotic resistance. Spontaneous mutations also underlie tumorigenesis and evolution of drug resistance. To better understand the causes of genetic change and how they may be manipulated in order to curb antibiotic resistance or the development of cancer, we must acquire a mechanistic understanding of the major sources of mutagenesis. Bacterial systems are particularly well-suited to studying mutagenesis because of their fast growth rate and the panoply of available experimental tools, but efforts to understand mutagenic mechanisms can be complicated by the experimental system employed. Here, we review our current understanding of mutagenic mechanisms in bacteria and describe the methods used to study mutagenesis in bacterial systems.

摘要

生物体基因组中的突变可以自发产生,即在没有外源压力和选择之前。突变通常对个体适应性是中性的或有害的,但也可以提供遗传多样性,推动进化。细菌中的诱变会导致抗生素耐药性这一已经严重且不断加剧的问题。然而,自发突变对人类健康的负面影响不仅限于细菌对抗生素的耐药性。自发突变也是肿瘤发生和药物耐药性演变的基础。为了更好地了解遗传变化的原因,以及如何操纵它们以抑制抗生素耐药性或癌症的发展,我们必须对主要的突变源有一个机械的理解。细菌系统特别适合于研究突变,因为它们的生长速度快,并且有各种各样的可用实验工具,但由于所采用的实验系统,理解突变机制的努力可能会变得复杂。在这里,我们回顾了我们目前对细菌中突变机制的理解,并描述了用于研究细菌系统中突变的方法。

相似文献

1
Sources of spontaneous mutagenesis in bacteria.
Crit Rev Biochem Mol Biol. 2018 Feb;53(1):29-48. doi: 10.1080/10409238.2017.1394262. Epub 2017 Nov 6.
2
Evolution of mutation rates in bacteria.
Mol Microbiol. 2006 May;60(4):820-7. doi: 10.1111/j.1365-2958.2006.05150.x.
3
Controlling mutation: intervening in evolution as a therapeutic strategy.
Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):341-54. doi: 10.1080/10409230701597741.
5
Fitness effects of mutations in bacteria.
J Mol Microbiol Biotechnol. 2011;21(1-2):20-35. doi: 10.1159/000332747. Epub 2012 Jan 13.
7
Sexual selection on spontaneous mutations strengthens the between-sex genetic correlation for fitness.
Evolution. 2017 Oct;71(10):2398-2409. doi: 10.1111/evo.13310. Epub 2017 Sep 13.
8
Mutations, substitutions, and selection: Linking mutagenic processes to cancer using evolutionary theory.
Biochim Biophys Acta Mol Basis Dis. 2024 Oct;1870(7):167268. doi: 10.1016/j.bbadis.2024.167268. Epub 2024 May 30.
9
Lethal mutagenesis of bacteria.
Genetics. 2008 Oct;180(2):1061-70. doi: 10.1534/genetics.108.091413. Epub 2008 Sep 9.

引用本文的文献

1
Comparative Genomic Analysis of Six Mycoplasma Gallisepticum Strains: Insights into Genetic Diversity and Antibiotic Resistance.
Arch Razi Inst. 2025 Feb 1;80(1):93-102. doi: 10.32592/ARI.2025.80.1.93. eCollection 2025 Feb.
2
Dinucleotide codon substitutions as a signature of diversifying selection in .
Front Mol Biosci. 2025 Jul 2;12:1511372. doi: 10.3389/fmolb.2025.1511372. eCollection 2025.
3
Reduced Genetic Heterogeneity for Stable Bioproduction by Harnessing the Bias and Mechanism of Mutation.
Microb Biotechnol. 2025 Jun;18(6):e70162. doi: 10.1111/1751-7915.70162.
5
Mutational features of chromids and chromosomes in provide new insights into the evolution of secondary replicons.
Microbiol Spectr. 2025 May 6;13(5):e0212724. doi: 10.1128/spectrum.02127-24. Epub 2025 Mar 25.
7
Screening of high glucose tolerant Escherichia coli for L-valine fermentation by autonomous evolutionary mutation.
Appl Microbiol Biotechnol. 2025 Jan 21;109(1):15. doi: 10.1007/s00253-024-13334-9.
9
Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies.
Front Microbiol. 2024 Sep 26;15:1469414. doi: 10.3389/fmicb.2024.1469414. eCollection 2024.
10
An Overview of the Recent Advances in Antimicrobial Resistance.
Microorganisms. 2024 Sep 21;12(9):1920. doi: 10.3390/microorganisms12091920.

本文引用的文献

1
Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.
Science. 2017 Mar 24;355(6331):1330-1334. doi: 10.1126/science.aaf9011.
2
The processive kinetics of gene conversion in bacteria.
Mol Microbiol. 2017 Jun;104(5):752-760. doi: 10.1111/mmi.13661. Epub 2017 Mar 13.
3
Screening of mutator phenotype in clinical strains of Acinetobacter baumannii.
Microb Pathog. 2017 Mar;104:175-179. doi: 10.1016/j.micpath.2017.01.033. Epub 2017 Jan 19.
4
Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra.
PLoS Genet. 2017 Jan 19;13(1):e1006570. doi: 10.1371/journal.pgen.1006570. eCollection 2017 Jan.
5
Self-correcting mismatches during high-fidelity DNA replication.
Nat Struct Mol Biol. 2017 Feb;24(2):140-143. doi: 10.1038/nsmb.3348. Epub 2017 Jan 9.
6
Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in Vibrio cholerae and Vibrio fischeri.
Mol Biol Evol. 2017 Jan;34(1):93-109. doi: 10.1093/molbev/msw224. Epub 2016 Oct 15.
7
Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli.
Nucleic Acids Res. 2016 Sep 6;44(15):7109-19. doi: 10.1093/nar/gkw647. Epub 2016 Jul 18.
8
The nature of mutations induced by replication–transcription collisions.
Nature. 2016 Jul 7;535(7610):178-81. doi: 10.1038/nature18316. Epub 2016 Jun 29.
9
Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing.
Nature. 2016 Jun 30;534(7609):693-6. doi: 10.1038/nature18313. Epub 2016 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验