Suppr超能文献

深度学习准确预测乳腺癌代谢组学数据中的雌激素受体状态。

Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.

机构信息

Epidemiology Program, University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States.

Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States.

出版信息

J Proteome Res. 2018 Jan 5;17(1):337-347. doi: 10.1021/acs.jproteome.7b00595. Epub 2017 Nov 27.

Abstract

Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value <0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.

摘要

代谢组学有望成为一种新的技术,用于诊断高度异质的疾病。传统上,用于诊断的代谢组学数据分析是使用各种基于统计和机器学习的分类方法完成的。然而,目前尚不清楚深度神经网络(一类越来越流行的机器学习方法)是否适合对代谢组学数据进行分类。在这里,我们使用了 271 例乳腺癌组织,204 例雌激素受体阳性(ER+)和 67 例雌激素受体阴性(ER-)的队列来测试前馈网络、深度学习(DL)框架以及六种广泛使用的机器学习模型的准确性,即随机森林(RF)、支持向量机(SVM)、递归分区和回归树(RPART)、线性判别分析(LDA)、微阵列预测分析(PAM)和广义增强模型(GBM)。在对 ER+/ER-患者进行分类时,DL 框架的曲线下面积(AUC)最高,为 0.93,优于其他六种机器学习算法。此外,第一层的生物学解释揭示了八个常见的富集显著代谢组学途径(调整后的 P 值<0.05),这是其他机器学习方法无法发现的。其中,蛋白质消化吸收和 ATP 结合盒(ABC)转运体途径也在这些样本中代谢组学和基因表达数据的综合分析中得到了证实。综上所述,深度学习方法在基于代谢组学的乳腺癌 ER 状态分类方面具有优势,具有最高的预测准确性(AUC=0.93)和更好的疾病生物学揭示。我们鼓励在代谢组学研究领域采用基于前馈网络的深度学习方法进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5330/5759031/a3db8f63d328/pr-2017-005954_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验