Suppr超能文献

人工智能算法评估乳腺癌患者组织微阵列中的激素状态。

Artificial Intelligence Algorithms to Assess Hormonal Status From Tissue Microarrays in Patients With Breast Cancer.

机构信息

Department of Electrical Engineering, Technion Israel Institute of Technology, Haifa, Israel.

Laboratory of Pediatric Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

出版信息

JAMA Netw Open. 2019 Jul 3;2(7):e197700. doi: 10.1001/jamanetworkopen.2019.7700.

Abstract

IMPORTANCE

Immunohistochemistry (IHC) is the most widely used assay for identification of molecular biomarkers. However, IHC is time consuming and costly, depends on tissue-handling protocols, and relies on pathologists' subjective interpretation. Image analysis by machine learning is gaining ground for various applications in pathology but has not been proposed to replace chemical-based assays for molecular detection.

OBJECTIVE

To assess the prediction feasibility of molecular expression of biomarkers in cancer tissues, relying only on tissue architecture as seen in digitized hematoxylin-eosin (H&E)-stained specimens.

DESIGN, SETTING, AND PARTICIPANTS: This single-institution retrospective diagnostic study assessed the breast cancer tissue microarrays library of patients from Vancouver General Hospital, British Columbia, Canada. The study and analysis were conducted from July 1, 2015, through July 1, 2018. A machine learning method, termed morphological-based molecular profiling (MBMP), was developed. Logistic regression was used to explore correlations between histomorphology and biomarker expression, and a deep convolutional neural network was used to predict the biomarker expression in examined tissues.

MAIN OUTCOMES AND MEASURES

Positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristics curve measures of MBMP for assessment of molecular biomarkers.

RESULTS

The database consisted of 20 600 digitized, publicly available H&E-stained sections of 5356 patients with breast cancer from 2 cohorts. The median age at diagnosis was 61 years for cohort 1 (412 patients) and 62 years for cohort 2 (4944 patients), and the median follow-up was 12.0 years and 12.4 years, respectively. Tissue histomorphology was significantly correlated with the molecular expression of all 19 biomarkers assayed, including estrogen receptor (ER), progesterone receptor (PR), and ERBB2 (formerly HER2). Expression of ER was predicted for 105 of 207 validation patients in cohort 1 (50.7%) and 1059 of 2046 validation patients in cohort 2 (51.8%), with PPVs of 97% and 98%, respectively, NPVs of 68% and 76%, respectively, and accuracy of 91% and 92%, respectively, which were noninferior to traditional IHC (PPV, 91%-98%; NPV, 51%-78%; and accuracy, 81%-90%). Diagnostic accuracy improved given more data. Morphological analysis of patients with ER-negative/PR-positive status by IHC revealed resemblance to patients with ER-positive status (Bhattacharyya distance, 0.03) and not those with ER-negative/PR-negative status (Bhattacharyya distance, 0.25). This suggests a false-negative IHC finding and warrants antihormonal therapy for these patients.

CONCLUSIONS AND RELEVANCE

For at least half of the patients in this study, MBMP appeared to predict biomarker expression with noninferiority to IHC. Results suggest that prediction accuracy is likely to improve as data used for training expand. Morphological-based molecular profiling could be used as a general approach for mass-scale molecular profiling based on digitized H&E-stained images, allowing quick, accurate, and inexpensive methods for simultaneous profiling of multiple biomarkers in cancer tissues.

摘要

重要性:免疫组织化学(IHC)是识别分子生物标志物最广泛使用的检测方法。然而,IHC 耗时且昂贵,取决于组织处理方案,并依赖于病理学家的主观解释。机器学习的图像分析在病理学的各种应用中得到了广泛的应用,但尚未被提议用于替代基于化学的分子检测方法。

目的:仅依靠数字化苏木精-伊红(H&E)染色标本中所见的组织学结构,评估癌症组织中分子标志物表达的预测可行性。

设计、设置和参与者:这是一项来自不列颠哥伦比亚省温哥华综合医院的回顾性单机构诊断研究,评估了乳腺癌组织微阵列库。研究和分析于 2015 年 7 月 1 日至 2018 年 7 月 1 日进行。开发了一种称为基于形态学的分子分析(MBMP)的机器学习方法。使用逻辑回归来探索组织形态学与生物标志物表达之间的相关性,并使用深度卷积神经网络来预测检查组织中的生物标志物表达。

主要结果和措施:MBMP 评估分子生物标志物的阳性预测值(PPV)、阴性预测值(NPV)和接收器工作特征曲线下面积测量值。

结果:该数据库由来自两个队列的 5356 名乳腺癌患者的 20600 个数字化、公开可用的 H&E 染色切片组成。队列 1(412 名患者)的中位诊断年龄为 61 岁,队列 2(4944 名患者)为 62 岁,中位随访时间分别为 12.0 年和 12.4 年。组织形态学与所有 19 个检测生物标志物的分子表达均显著相关,包括雌激素受体(ER)、孕激素受体(PR)和 ERBB2(以前称为 HER2)。在队列 1 的 207 名验证患者中,105 名患者(50.7%)和队列 2 的 2046 名验证患者中 1059 名患者(51.8%)预测了 ER 的表达,PPV 分别为 97%和 98%,NPV 分别为 68%和 76%,准确率分别为 91%和 92%,与传统 IHC 相比非劣效(PPV,91%-98%;NPV,51%-78%;和准确性,81%-90%)。更多的数据可以提高诊断准确性。对 IHC 检测为 ER 阴性/PR 阳性状态的患者进行形态学分析,与 ER 阳性状态(Bhattacharyya 距离,0.03)相似,而与 ER 阴性/PR 阴性状态(Bhattacharyya 距离,0.25)不相似。这表明存在假阴性的 IHC 结果,这些患者需要进行抗激素治疗。

结论和相关性:在这项研究的至少一半患者中,MBMP 似乎可以预测生物标志物的表达,其结果与 IHC 非劣效。结果表明,随着用于训练的数据扩展,预测准确性可能会提高。基于数字化 H&E 染色图像的基于形态学的分子分析可以作为一种用于大规模分子分析的通用方法,允许快速、准确、廉价地同时对癌症组织中的多个生物标志物进行分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1af5/6661721/c9f6287f42a0/jamanetwopen-2-e197700-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验