Suppr超能文献

从多环芳烃苊表面水的逐步生长中捕获难以捉摸的水三聚体。

Capturing the Elusive Water Trimer from the Stepwise Growth of Water on the Surface of the Polycyclic Aromatic Hydrocarbon Acenaphthene.

作者信息

Steber Amanda L, Pérez Cristóbal, Temelso Berhane, Shields George C, Rijs Anouk M, Pate Brooks H, Kisiel Zbigniew, Schnell Melanie

机构信息

Deutsches Elektronen-Synchrotron , Notkestrasse 85, D-22607 Hamburg, Germany.

Max-Planck-Institut für Struktur und Dynamik der Materie , Luruper Chaussee 149, D-22761 Hamburg, Germany.

出版信息

J Phys Chem Lett. 2017 Dec 7;8(23):5744-5750. doi: 10.1021/acs.jpclett.7b02695. Epub 2017 Nov 13.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are key players in reaction chemistry. While it is postulated that they serve as a basis for ice grains, there has been no direct detection of PAHs in astronomical environments. We aim to investigate the hydration of PAHs to set a foundation for the future exploration of potential ice formation pathways. We report results from chirped pulse Fourier transform microwave spectroscopy and quantum-chemical calculations for the PAH acenaphthene and acenaphthene complexed with up to four water molecules. The acenaphthene-(HO) complex is of particular interest as the elusive cyclic water trimer was observed. It appears in a slightly distorted configuration when compared with the pure water trimer. This is explained by hydrogen-bond net cooperativity effects. Binding energies for the complexes are presented. Our results provide insight into the onset of complex aggregation that could be occurring in extraterrestrial environments as part of ice grain formation.

摘要

多环芳烃(PAHs)是反应化学中的关键物质。虽然据推测它们是冰粒的基础,但在天文环境中尚未直接检测到多环芳烃。我们旨在研究多环芳烃的水合作用,为未来探索潜在的冰形成途径奠定基础。我们报告了对苊以及与多达四个水分子络合的苊进行啁啾脉冲傅里叶变换微波光谱和量子化学计算的结果。苊 -(HO)络合物特别令人感兴趣,因为观察到了难以捉摸的环状三聚体水。与纯水三聚体相比,它以略微扭曲的构型出现。这可以通过氢键网络协同效应来解释。给出了络合物的结合能。我们的结果为外星环境中作为冰粒形成一部分可能发生的络合物聚集的起始提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验