Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607, Hamburg, Germany.
Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany.
Chemistry. 2020 Aug 21;26(47):10817-10825. doi: 10.1002/chem.202001444. Epub 2020 Jul 27.
Diadamantyl ether (DAE, C H O) represents a good model to study the interplay between London dispersion and hydrogen-bond interactions. By using broadband rotational spectroscopy, an accurate experimental structure of the diadamantyl ether monomer is obtained and its aggregates with water and a variety of aliphatic alcohols of increasing size are analyzed. In the monomer, C-H⋅⋅⋅H-C London dispersion attractions between the two adamantyl subunits further stabilize its structure. Water and the alcohol partners bind to diadamantyl ether through hydrogen bonding and non-covalent O ⋅⋅⋅H-C and C-H ⋅⋅⋅H-C interactions. Electrostatic contributions drive the stabilization of all the complexes, whereas London dispersion interactions become more pronounced with increasing size of the alcohol. Complexes with dominant dispersion contributions are significantly higher in energy and were not observed in the experiment. The results presented herein shed light on the first steps of microsolvation and aggregation of molecular complexes with London dispersion energy donor (DED) groups and the kind of interactions that control them.
二金刚烷基醚(DAE,C18H30O)是研究伦敦色散力和氢键相互作用之间相互作用的理想模型。通过使用宽带旋转光谱学,获得了二金刚烷基醚单体的精确实验结构,并对其与水和各种尺寸递增的脂肪醇的聚集体进行了分析。在单体中,两个金刚烷基部分之间的 C-H···H-C 伦敦色散吸引进一步稳定了其结构。水和醇类通过氢键以及非共价的 O···H-C 和 C-H···H-C 相互作用与二金刚烷基醚结合。静电贡献驱动所有配合物的稳定,而随着醇的尺寸增加,伦敦色散相互作用变得更加明显。具有主导色散贡献的配合物的能量显著更高,但在实验中未观察到。本文的结果阐明了具有伦敦色散能供体(DED)基团的分子配合物的微溶剂化和聚集的最初步骤,以及控制这些相互作用的类型。