Suppr超能文献

基于运动学习尖峰神经网络模型的实时小脑神经假体系统。

Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

机构信息

Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, People's Republic of China.

出版信息

J Neural Eng. 2018 Feb;15(1):016021. doi: 10.1088/1741-2552/aa98e9.

Abstract

OBJECTIVE

Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC).

APPROACH

The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training.

MAIN RESULTS

This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels.

SIGNIFICANCE

This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

摘要

目的

由于各种医疗条件导致的大脑损伤,影响了患者的日常生活,而神经紊乱仍然没有完全的治愈方法。最近,能够在功能上替代受损神经回路的神经假体作为这些问题的一种可能的解决方案而出现。在这里,我们描述了一个实时小脑神经假体系统的开发,以替代小脑回路中的神经功能,用于学习延迟眨眼条件反射(DEC)。

方法

该系统由小脑神经回路的生物现实尖峰神经网络(SNN)模型提供动力,该模型考虑了神经元群体和网络的解剖连接。该模型模拟了学习 DEC 所必需的突触可塑性。这个 SNN 模型被仔细地实现在现场可编程门阵列(FPGA)平台上,用于实时模拟。这个硬件系统与麻醉大鼠的体内实验进行了接口,并使用从动物身上在线记录的神经尖峰来学习和触发动物在训练期间的条件眨眼。

主要结果

这个大鼠-FPGA 混合系统能够实时处理神经元尖峰,具有一个约 10000 个神经元的嵌入式小脑模型,并重现具有不同刺激间间隔的 DEC 学习。我们的结果验证了系统性能在神经(发射模式)和行为(眨眼模式)水平上都是生理相关的。

意义

这个集成系统提供了实时模拟小脑回路所需的足够计算能力。该系统在尖峰水平上与生物系统自然交互,并且可以推广到包括其他神经组件(神经元类型和可塑性)和神经功能,用于潜在的神经假体应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验