Iqbal Ehtesham, Mallah Robbie, Rhodes Daniel, Wu Honghan, Romero Alvin, Chang Nynn, Dzahini Olubanke, Pandey Chandra, Broadbent Matthew, Stewart Robert, Dobson Richard J B, Ibrahim Zina M
The Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom.
Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, United Kingdom.
PLoS One. 2017 Nov 9;12(11):e0187121. doi: 10.1371/journal.pone.0187121. eCollection 2017.
Adverse drug events (ADEs) are unintended responses to medical treatment. They can greatly affect a patient's quality of life and present a substantial burden on healthcare. Although Electronic health records (EHRs) document a wealth of information relating to ADEs, they are frequently stored in the unstructured or semi-structured free-text narrative requiring Natural Language Processing (NLP) techniques to mine the relevant information. Here we present a rule-based ADE detection and classification pipeline built and tested on a large Psychiatric corpus comprising 264k patients using the de-identified EHRs of four UK-based psychiatric hospitals. The pipeline uses characteristics specific to Psychiatric EHRs to guide the annotation process, and distinguishes: a) the temporal value associated with the ADE mention (whether it is historical or present), b) the categorical value of the ADE (whether it is assertive, hypothetical, retrospective or a general discussion) and c) the implicit contextual value where the status of the ADE is deduced from surrounding indicators, rather than explicitly stated. We manually created the rulebase in collaboration with clinicians and pharmacists by studying ADE mentions in various types of clinical notes. We evaluated the open-source Adverse Drug Event annotation Pipeline (ADEPt) using 19 ADEs specific to antipsychotics and antidepressants medication. The ADEs chosen vary in severity, regularity and persistence. The average F-measure and accuracy achieved by our tool across all tested ADEs were 0.83 and 0.83 respectively. In addition to annotation power, the ADEPT pipeline presents an improvement to the state of the art context-discerning algorithm, ConText.
药物不良事件(ADEs)是医疗治疗中出现的意外反应。它们会极大地影响患者的生活质量,并给医疗保健带来沉重负担。尽管电子健康记录(EHRs)记录了大量与药物不良事件相关的信息,但这些信息通常存储在非结构化或半结构化的自由文本叙述中,需要使用自然语言处理(NLP)技术来挖掘相关信息。在此,我们展示了一个基于规则的药物不良事件检测和分类流程,该流程基于来自英国四家精神病医院的26.4万名患者的去识别化电子健康记录,在一个大型精神病语料库上构建并进行了测试。该流程利用精神病电子健康记录的特定特征来指导注释过程,并区分:a)与药物不良事件提及相关的时间值(无论是历史的还是当前的),b)药物不良事件的类别值(无论是肯定的、假设的、回顾性的还是一般性讨论),以及c)隐含的上下文值,其中药物不良事件的状态是从周围指标推断出来的,而不是明确陈述的。我们与临床医生和药剂师合作,通过研究各种类型临床笔记中的药物不良事件提及,手动创建了规则库。我们使用19种特定于抗精神病药物和抗抑郁药物的药物不良事件评估了开源的药物不良事件注释流程(ADEPt)。所选择的药物不良事件在严重程度、发生频率和持续时间方面各不相同。我们的工具在所有测试的药物不良事件上实现的平均F值和准确率分别为0.83和0.83。除了注释能力外,ADEPT流程还对现有技术水平的上下文识别算法ConText进行了改进。