Suppr超能文献

基于声学的系统对冠状动脉疾病风险分层的诊断性能。

Diagnostic performance of an acoustic-based system for coronary artery disease risk stratification.

机构信息

Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.

Department of Cardiology, Hospital Unit West, Herning, Denmark.

出版信息

Heart. 2018 Jun;104(11):928-935. doi: 10.1136/heartjnl-2017-311944. Epub 2017 Nov 9.

Abstract

OBJECTIVE

Diagnosing coronary artery disease (CAD) continues to require substantial healthcare resources. Acoustic analysis of transcutaneous heart sounds of cardiac movement and intracoronary turbulence due to obstructive coronary disease could potentially change this. The aim of this study was thus to test the diagnostic accuracy of a new portable acoustic device for detection of CAD.

METHODS

We included 1675 patients consecutively with low to intermediate likelihood of CAD who had been referred for cardiac CT angiography. If significant obstruction was suspected in any coronary segment, patients were referred to invasive angiography and fractional flow reserve (FFR) assessment. Heart sound analysis was performed in all patients. A predefined acoustic CAD-score algorithm was evaluated; subsequently, we developed and validated an updated CAD-score algorithm that included both acoustic features and clinical risk factors. Low risk is indicated by a CAD-score value ≤20.

RESULTS

Haemodynamically significant CAD assessed from FFR was present in 145 (10.0%) patients. In the entire cohort, the predefined CAD-score had a sensitivity of 63% and a specificity of 44%. In total, 50% had an updated CAD-score value ≤20. At this cut-off, sensitivity was 81% (95% CI 73% to 87%), specificity 53% (95% CI 50% to 56%), positive predictive value 16% (95% CI 13% to 18%) and negative predictive value 96% (95% CI 95% to 98%) for diagnosing haemodynamically significant CAD.

CONCLUSION

Sound-based detection of CAD enables risk stratification superior to clinical risk scores. With a negative predictive value of 96%, this new acoustic rule-out system could potentially supplement clinical assessment to guide decisions on the need for further diagnostic investigation.

TRIAL REGISTRATION NUMBER

ClinicalTrials.gov identifier NCT02264717; Results.

摘要

目的

诊断冠状动脉疾病(CAD)仍然需要大量的医疗资源。由于阻塞性冠状动脉疾病导致的心脏运动的经皮心音和腔内湍流的声学分析可能会改变这一点。因此,本研究的目的是测试一种新的便携式声学设备用于检测 CAD 的诊断准确性。

方法

我们连续纳入了 1675 例低至中度 CAD 可能性的患者,这些患者均被转介行心脏 CT 血管造影检查。如果怀疑任何冠状动脉节段有显著阻塞,患者将被转介行有创血管造影和血流储备分数(FFR)评估。所有患者均进行心音分析。评估了一种预定义的声学 CAD 评分算法;随后,我们开发并验证了一种包含声学特征和临床危险因素的更新的 CAD 评分算法。CAD 评分值≤20 表明低风险。

结果

根据 FFR 评估,血流动力学意义上的 CAD 存在于 145 例(10.0%)患者中。在整个队列中,预定义的 CAD 评分的敏感性为 63%,特异性为 44%。总共有 50%的患者更新后的 CAD 评分值≤20。在此截断值处,敏感性为 81%(95%CI 73%至 87%),特异性为 53%(95%CI 50%至 56%),阳性预测值为 16%(95%CI 13%至 18%),阴性预测值为 96%(95%CI 95%至 98%),用于诊断血流动力学意义上的 CAD。

结论

基于声音的 CAD 检测可实现优于临床风险评分的风险分层。阴性预测值为 96%,这种新的声学排除系统有可能补充临床评估,指导是否需要进一步诊断检查的决策。

试验注册

ClinicalTrials.gov 标识符 NCT02264717;结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db9/5969347/3c503dae4538/heartjnl-2017-311944f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验