Suppr超能文献

异步与同步状态之间的转换:小神经回路中的相关性理论

Transitions between asynchronous and synchronous states: a theory of correlations in small neural circuits.

作者信息

Fasoli Diego, Cattani Anna, Panzeri Stefano

机构信息

Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy.

Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08002, Barcelona, Spain.

出版信息

J Comput Neurosci. 2018 Feb;44(1):25-43. doi: 10.1007/s10827-017-0667-3. Epub 2017 Nov 10.

Abstract

The study of correlations in neural circuits of different size, from the small size of cortical microcolumns to the large-scale organization of distributed networks studied with functional imaging, is a topic of central importance to systems neuroscience. However, a theory that explains how the parameters of mesoscopic networks composed of a few tens of neurons affect the underlying correlation structure is still missing. Here we consider a theory that can be applied to networks of arbitrary size with multiple populations of homogeneous fully-connected neurons, and we focus its analysis to a case of two populations of small size. We combine the analysis of local bifurcations of the dynamics of these networks with the analytical calculation of their cross-correlations. We study the correlation structure in different regimes, showing that a variation of the external stimuli causes the network to switch from asynchronous states, characterized by weak correlation and low variability, to synchronous states characterized by strong correlations and wide temporal fluctuations. We show that asynchronous states are generated by strong stimuli, while synchronous states occur through critical slowing down when the stimulus moves the network close to a local bifurcation. In particular, strongly positive correlations occur at the saddle-node and Andronov-Hopf bifurcations of the network, while strongly negative correlations occur when the network undergoes a spontaneous symmetry-breaking at the branching-point bifurcations. These results show how the correlation structure of firing-rate network models is strongly modulated by the external stimuli, even keeping the anatomical connections fixed. These results also suggest an effective mechanism through which biological networks may dynamically modulate the encoding and integration of sensory information.

摘要

从皮层微柱的小尺度到通过功能成像研究的分布式网络的大规模组织,对不同规模神经回路中的相关性进行研究,是系统神经科学的一个核心重要课题。然而,一个能解释由几十 个神经元组成的介观网络参数如何影响潜在相关结构的理论仍然缺失。在这里,我们考虑一种可应用于具有多个同质全连接神经元群体的任意规模网络的理论,并将其分析重点放在两个小规模群体的情况。我们将这些网络动力学的局部分岔分析与它们互相关性的解析计算相结合。我们研究了不同状态下的相关结构,表明外部刺激的变化会使网络从以弱相关性和低变异性为特征的异步状态,转变为以强相关性和广泛时间波动为特征的同步状态。我们表明,强刺激会产生异步状态,而当刺激使网络接近局部分岔时,通过临界慢化会出现同步状态。特别是,在网络的鞍结分岔和安德罗诺夫 - 霍普夫分岔处会出现强正相关,而当网络在分支点分岔处经历自发对称性破缺时会出现强负相关。这些结果表明,即使解剖连接固定,外部刺激也会强烈调节发放率网络模型的相关结构。这些结果还提出了一种有效机制,通过该机制生物网络可以动态调节感觉信息的编码和整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cba/5770155/e34733c271d4/10827_2017_667_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验