Suppr超能文献

微流控芯片中的细菌趋化作用定量化学生物传感。

Quantitative chemical biosensing by bacterial chemotaxis in microfluidic chips.

机构信息

Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland 1015.

Department of Biotechnology Faculty of Applied Sciences, Delft University of Technology, Delft, 2629 HZ, The Netherlands.

出版信息

Environ Microbiol. 2018 Jan;20(1):241-258. doi: 10.1111/1462-2920.13982. Epub 2017 Dec 21.

Abstract

Whole-cell bacterial bioreporters are proposed as alternatives to chemical analysis of, for example, pollutants in environmental compartments. Commonly based on reporter gene induction, bioreporters produce a detectable signal within 30 min to a few hours after exposure to the chemical target, which is impractical for applications aiming at a fast response. In an attempt to attain faster readout but maintain flexibility of chemical targeting, we explored the concept for quantitative chemical sensing by bacterial chemotaxis. Chemotaxis was quantified from enrichment of cells across a 600 µm-wide chemical gradient stabilized by parallel flow in a microfluidic chip, further supported by transport and chemotaxis steady state and kinetic modelling. As proof-of-concept, we quantified Escherichia coli chemotaxis towards serine, aspartate and methylaspartate as a function of attractant concentration and exposure time. E. coli chemotaxis enrichment increased sharply between 0 and 10 µM serine, before saturating at 100 µM. The chemotaxis accumulation rate was maximal at 10 µM serine, leading to observable cell enrichment within 5 min. The potential application for biosensing of environmental toxicants was investigated by quantifying chemotaxis of Cupriavidus pinatubonensis JMP134 towards the herbicide 2,4-dichlorophenoxyacetate. Our results show that bacterial chemotaxis can be quantified on a scale of minutes and may be used for developing faster bioreporter assays.

摘要

全细胞细菌生物传感器被提议作为化学分析的替代品,例如,对环境隔室中污染物的分析。通常基于报告基因诱导,生物传感器在暴露于化学靶标后 30 分钟到几个小时内产生可检测的信号,但对于旨在快速响应的应用来说,这是不切实际的。为了实现更快的读数,但保持化学靶向的灵活性,我们探索了通过细菌趋化作用进行定量化学传感的概念。趋化作用是通过在微流控芯片中平行流动稳定的 600 µm 宽化学梯度上细胞的富集来量化的,进一步得到运输和趋化稳态和动力学模型的支持。作为概念验证,我们量化了大肠杆菌对丝氨酸、天冬氨酸和甲基天冬氨酸的趋化性作为吸引剂浓度和暴露时间的函数。大肠杆菌趋化性富集在 0 到 10 µM 丝氨酸之间急剧增加,然后在 100 µM 时饱和。在 10 µM 丝氨酸时,趋化性积累率最大,导致在 5 分钟内可观察到细胞富集。通过量化 Cupriavidus pinatubonensis JMP134 对除草剂 2,4-二氯苯氧乙酸的趋化性,研究了其在环境毒物生物传感中的潜在应用。我们的结果表明,细菌趋化性可以在几分钟的时间内进行量化,并可能用于开发更快的生物传感器测定法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验