Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , United Kingdom.
Biomacromolecules. 2018 May 14;19(5):1378-1388. doi: 10.1021/acs.biomac.7b01204. Epub 2017 Nov 29.
A key drawback of hydrogel materials for tissue engineering applications is their characteristic swelling response, which leads to a diminished mechanical performance. However, if a solution can be found to overcome such limitations, there is a wider application for these materials. Herein, we describe a simple and effective way to control the swelling and degradation rate of nucleophilic thiol-yne poly(ethylene glycol) (PEG) hydrogel networks using two straightforward routes: (1) using multiarm alkyne and thiol terminated PEG precursors or (2) introducing a thermoresponsive unit into the PEG network while maintaining their robust mechanical properties. In situ hydrogel materials were formed in under 10 min in PBS solution at pH 7.4 without the need for an external catalyst by using easily accessible precursors. Both pathways resulted in strong tunable hydrogel materials (compressive strength values up to 2.4 MPa) which could effectively encapsulate cells, thus highlighting their potential as soft tissue scaffolds.
水凝胶材料在组织工程应用中的一个主要缺点是其特征性的溶胀响应,这导致机械性能降低。然而,如果能找到克服这些限制的方法,这些材料的应用范围将会更广。在此,我们描述了一种简单而有效的方法来控制亲核硫醇-炔聚(乙二醇)(PEG)水凝胶网络的溶胀和降解速率,使用两种简单的途径:(1)使用多臂炔烃和巯基封端的 PEG 前体,或(2)在保持其强机械性能的同时将温敏单元引入 PEG 网络。通过使用易于获得的前体,在 PBS 溶液中于 pH 7.4 下在不到 10 分钟的时间内原位形成水凝胶材料,无需外部催化剂。这两种途径都得到了强可调水凝胶材料(抗压强度值高达 2.4 MPa),可有效包封细胞,从而突出了它们作为软组织支架的潜力。