文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人羊膜细胞逆转实验性新生儿肺损伤的急性和慢性肺损伤。

Human amnion cells reverse acute and chronic pulmonary damage in experimental neonatal lung injury.

机构信息

The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.

Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia.

出版信息

Stem Cell Res Ther. 2017 Nov 10;8(1):257. doi: 10.1186/s13287-017-0689-9.


DOI:10.1186/s13287-017-0689-9
PMID:29126435
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5681809/
Abstract

BACKGROUND: Despite advances in neonatal care, bronchopulmonary dysplasia (BPD) remains a significant contributor to infant mortality and morbidity. While human amnion epithelial cells (hAECs) have shown promise in small and large animal models of BPD, there is scarce information on long-term benefit and clinically relevant questions surrounding administration strategy remain unanswered. In assessing the therapeutic potential of hAECs, we investigated the impact of cell dosage, administration routes and timing of treatment in a pre-clinical model of BPD. METHODS: Lipopolysaccharide was introduced intra-amniotically at day 16 of pregnancy prior to exposure to 65% oxygen (hyperoxia) at birth. hAECs were administered either 12 hours (early) or 4 days (late) after hyperoxia commenced. Collective lung tissues were subjected to histological analysis, multikine ELISA for inflammatory cytokines, FACS for immune cell populations and 3D lung stem cell culture at neonatal stage (postnatal day 7 and 14). Invasive lung function test and echocardiography were applied at 6 and 10 weeks of age. RESULTS: hAECs improved the tissue-to-airspace ratio and septal crest density in a dose-dependent manner, regardless of administration route. Early administration of hAECs, coinciding with the commencement of postnatal hyperoxia, was associated with reduced macrophages, dendritic cells and natural killer cells. This was not the case if hAECs were administered when lung injury was established. Fittingly, early hAEC treatment was more efficacious in reducing interleukin-1β, tumour necrosis factor alpha and monocyte chemoattractant protein-1 levels. Early hAEC treatment was also associated with reduced airway hyper-responsiveness and normalisation of pressure-volume loops. Pulmonary hypertension and right ventricle hypertrophy were also prevented in the early hAEC treatment group, and this persisted until 10 weeks of age. CONCLUSIONS: Early hAEC treatment appears to be advantageous over late treatment. There was no difference in efficacy between intravenous and intratracheal administration. The benefits of hAEC administration resulted in long-term improvements in cardiorespiratory function.

摘要

背景:尽管新生儿护理技术取得了进步,但支气管肺发育不良(BPD)仍是导致婴儿死亡和发病的重要原因。虽然人羊膜上皮细胞(hAEC)在 BPD 的小动物和大动物模型中显示出了一定的前景,但关于其长期益处以及临床相关的给药策略问题仍未有明确答案。在评估 hAEC 的治疗潜力时,我们在 BPD 的临床前模型中研究了细胞剂量、给药途径和治疗时机对其的影响。

方法:在妊娠第 16 天向羊膜腔内注射脂多糖,然后在出生时暴露于 65%的氧气(高氧)中。hAEC 在高氧开始后 12 小时(早期)或 4 天(晚期)给药。对肺组织进行组织学分析、多因子 ELISA 检测炎症细胞因子、流式细胞术检测免疫细胞群,以及对新生期(出生后第 7 天和第 14 天)的肺干细胞进行 3D 培养。在 6 和 10 周龄时进行有创性肺功能测试和超声心动图检查。

结果:hAEC 以剂量依赖的方式改善了组织-气腔比和隔嵴密度,与给药途径无关。早期给予 hAEC,与出生后高氧开始的时间一致,可减少巨噬细胞、树突状细胞和自然杀伤细胞。如果在肺损伤已经建立时给予 hAEC,则不会出现这种情况。合适地,早期 hAEC 治疗在降低白细胞介素-1β、肿瘤坏死因子-α 和单核细胞趋化蛋白-1 水平方面更有效。早期 hAEC 治疗还与气道高反应性降低和压力-容积环正常化有关。肺动脉高压和右心室肥厚也在早期 hAEC 治疗组得到预防,并持续至 10 周龄。

结论:早期 hAEC 治疗似乎优于晚期治疗。静脉内和气管内给药的疗效没有差异。hAEC 给药的益处导致心肺功能的长期改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/fb92888fd4a7/13287_2017_689_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/9f7d5c420d28/13287_2017_689_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/2ee5be2a402c/13287_2017_689_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/40171a387537/13287_2017_689_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/2e7cb6fa65bd/13287_2017_689_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/b15869a26d0e/13287_2017_689_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/82fd4b83b1d8/13287_2017_689_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/2bf8b5b47941/13287_2017_689_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/8267988ebafa/13287_2017_689_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/9823d3485712/13287_2017_689_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/3761b30aa259/13287_2017_689_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/b09ba29ddcaf/13287_2017_689_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/b6c243ed16fd/13287_2017_689_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/ca538bc9bd69/13287_2017_689_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/fb92888fd4a7/13287_2017_689_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/9f7d5c420d28/13287_2017_689_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/2ee5be2a402c/13287_2017_689_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/40171a387537/13287_2017_689_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/2e7cb6fa65bd/13287_2017_689_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/b15869a26d0e/13287_2017_689_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/82fd4b83b1d8/13287_2017_689_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/2bf8b5b47941/13287_2017_689_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/8267988ebafa/13287_2017_689_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/9823d3485712/13287_2017_689_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/3761b30aa259/13287_2017_689_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/b09ba29ddcaf/13287_2017_689_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/b6c243ed16fd/13287_2017_689_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/ca538bc9bd69/13287_2017_689_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbb/5681809/fb92888fd4a7/13287_2017_689_Fig14_HTML.jpg

相似文献

[1]
Human amnion cells reverse acute and chronic pulmonary damage in experimental neonatal lung injury.

Stem Cell Res Ther. 2017-11-10

[2]
Human amnion epithelial cells modulate hyperoxia-induced neonatal lung injury in mice.

Cytotherapy. 2013-5-1

[3]
Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury.

Stem Cell Res Ther. 2017-2-28

[4]
Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep.

Am J Obstet Gynecol. 2011-4-7

[5]
Assessing the impact of gestational age of donors on the efficacy of amniotic epithelial cell-derived extracellular vesicles in experimental bronchopulmonary dysplasia.

Stem Cell Res Ther. 2022-5-12

[6]
Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair.

Am J Respir Crit Care Med. 2010-6-3

[7]
Use of human amniotic epithelial cells in mouse models of bleomycin-induced lung fibrosis: A systematic review and meta-analysis.

PLoS One. 2018-5-17

[8]
Human amnion epithelial cells repair established lung injury.

Cell Transplant. 2012-10-4

[9]
Human amnion cells for the prevention of bronchopulmonary dysplasia: a protocol for a phase I dose escalation study.

BMJ Open. 2019-3-1

[10]
Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function.

Cell Transplant. 2010-11-19

引用本文的文献

[1]
Reinitiating lung development: a novel approach in the management of bronchopulmonary dysplasia.

Respir Res. 2024-10-24

[2]
Leveraging Integrated RNA Sequencing to Decipher Adrenomedullin's Protective Mechanisms in Experimental Bronchopulmonary Dysplasia.

Genes (Basel). 2024-6-19

[3]
Therapeutic potential of extracellular vesicles derived from human amniotic epithelial cells for perinatal cerebral and pulmonary injury.

Stem Cells Transl Med. 2024-8-16

[4]
Human amnion epithelial cell therapy reduces hypertension-induced vascular stiffening and cognitive impairment.

Sci Rep. 2024-1-22

[5]
Advances in neonatal cell therapies: Proceedings of the First Neonatal Cell Therapies Symposium (2022).

Pediatr Res. 2023-11

[6]
Perinatal Stem Cell Therapy to Treat Type 1 Diabetes Mellitus: A Never-Say-Die Story of Differentiation and Immunomodulation.

Int J Mol Sci. 2022-11-23

[7]
Human amniotic epithelial cells exert anti-cancer effects through secretion of immunomodulatory small extracellular vesicles (sEV).

Cancer Cell Int. 2022-10-29

[8]
Assessing the impact of gestational age of donors on the efficacy of amniotic epithelial cell-derived extracellular vesicles in experimental bronchopulmonary dysplasia.

Stem Cell Res Ther. 2022-5-12

[9]
Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns.

Cells. 2022-4-9

[10]
Human placenta-derived amniotic epithelial cells as a new therapeutic hope for COVID-19-associated acute respiratory distress syndrome (ARDS) and systemic inflammation.

Stem Cell Res Ther. 2022-3-25

本文引用的文献

[1]
Long-Term Outcomes of Pulmonary Hypertension in Preterm Infants with Bronchopulmonary Dysplasia.

Neonatology. 2016-5-13

[2]
Evaluating the Impact of Human Amnion Epithelial Cells on Angiogenesis.

Stem Cells Int. 2016

[3]
Wnt signaling in dendritic cells: its role in regulation of immunity and tolerance.

Discov Med. 2015-4

[4]
Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells.

Stem Cell Reports. 2015-4-16

[5]
Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts.

Cell Stem Cell. 2015-1-22

[6]
Induced pluripotent stem cell therapy ameliorates hyperoxia-augmented ventilator-induced lung injury through suppressing the Src pathway.

PLoS One. 2014-10-13

[7]
Chronic lung disease of prematurity: long-term respiratory outcome.

Neonatology. 2014

[8]
The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength.

Genes Dev. 2014-2-15

[9]
Neonatal oxygen exposure alters airway hyper-responsiveness but not the response to allergen challenge in adult mice.

Pediatr Allergy Immunol. 2014-3

[10]
Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis.

Cell. 2014-1-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索