Suppr超能文献

从还原论到整体论:通过基因组工程迈向更完整的发育观。

From Reductionism to Holism: Toward a More Complete View of Development Through Genome Engineering.

作者信息

Delker Rebecca K, Mann Richard S

机构信息

Department of Biochemistry and Molecular Biophysics and Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 612 West 130th Street, 9th Floor, New York, NY, 10027, USA.

出版信息

Adv Exp Med Biol. 2017;1016:45-74. doi: 10.1007/978-3-319-63904-8_3.

Abstract

Paradigm shifts in science are often coupled to technological advances. New techniques offer new roads of discovery; but, more than this, they shape the way scientists approach questions. Developmental biology exemplifies this idea both in its past and present. The rise of molecular biology and genetics in the late twentieth century shifted the focus from the anatomical to the molecular, nudging the underlying philosophy from holism to reductionism. Developmental biology is currently experiencing yet another transformation triggered by '-omics' technology and propelled forward by CRISPR genome engineering (GE). Together, these technologies are helping to reawaken a holistic approach to development. Herein, we focus on CRISPR GE and its potential to reveal principles of development at the level of the genome, the epigenome, and the cell. Within each stage we illustrate how GE can move past pure reductionism and embrace holism, ultimately delivering a more complete view of development.

摘要

科学范式的转变往往与技术进步息息相关。新技术为发现开辟了新途径;但更重要的是,它们塑造了科学家解决问题的方式。发育生物学在其过去和现在都体现了这一理念。20世纪后期分子生物学和遗传学的兴起将研究重点从解剖学转向了分子层面,促使基础哲学从整体论转向还原论。发育生物学目前正经历着由“组学”技术引发的又一次变革,并由CRISPR基因组工程(GE)推动向前发展。这些技术共同助力重新唤醒一种整体论的发育研究方法。在此,我们聚焦于CRISPR GE及其在基因组、表观基因组和细胞层面揭示发育原理的潜力。在每个阶段,我们都阐述了GE如何超越单纯的还原论并接纳整体论,最终提供一个更完整的发育视角。

相似文献

1
From Reductionism to Holism: Toward a More Complete View of Development Through Genome Engineering.
Adv Exp Med Biol. 2017;1016:45-74. doi: 10.1007/978-3-319-63904-8_3.
2
Target Discovery for Precision Medicine Using High-Throughput Genome Engineering.
Adv Exp Med Biol. 2017;1016:123-145. doi: 10.1007/978-3-319-63904-8_7.
3
Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease.
Gerontology. 2017;63(2):103-117. doi: 10.1159/000452972. Epub 2016 Dec 15.
4
Recent advances in genome editing of stem cells for drug discovery and therapeutic application.
Pharmacol Ther. 2020 May;209:107501. doi: 10.1016/j.pharmthera.2020.107501. Epub 2020 Feb 13.
6
The New RNA-Editing Era - Ethical Considerations.
Trends Genet. 2021 Aug;37(8):685-687. doi: 10.1016/j.tig.2021.04.013. Epub 2021 May 8.
7
Brave new dialogue.
Nat Genet. 2019 Mar;51(3):365. doi: 10.1038/s41588-019-0374-2.
8
Genetic engineering: Allele-specific genome editing of disease loci.
Nat Rev Genet. 2016 Nov;17(11):660. doi: 10.1038/nrg.2016.131. Epub 2016 Oct 3.
9
UK scientists gain licence to edit genes in human embryos.
Nature. 2016 Feb 4;530(7588):18. doi: 10.1038/nature.2016.19270.
10
CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases.
Semin Cell Dev Biol. 2019 Dec;96:32-43. doi: 10.1016/j.semcdb.2019.05.007. Epub 2019 Jun 20.

引用本文的文献

3
Epigenetic Studies of Chinese Herbal Medicine: Pleiotropic Role of DNA Methylation.
Front Pharmacol. 2021 Dec 7;12:790321. doi: 10.3389/fphar.2021.790321. eCollection 2021.
4
Great future or greedy venture: Precision medicine needs philosophy.
Health Sci Rep. 2021 Sep 14;4(3):e376. doi: 10.1002/hsr2.376. eCollection 2021 Sep.
5
Low affinity binding sites in an activating CRM mediate negative autoregulation of the Drosophila Hox gene Ultrabithorax.
PLoS Genet. 2019 Oct 7;15(10):e1008444. doi: 10.1371/journal.pgen.1008444. eCollection 2019 Oct.
6
Robust ΦC31-Mediated Genome Engineering in Using Minimal attP/attB Phage Sites.
G3 (Bethesda). 2018 May 4;8(5):1399-1402. doi: 10.1534/g3.118.200051.

本文引用的文献

1
Quantitative Analysis of Synthetic Cell Lineage Tracing Using Nuclease Barcoding.
ACS Synth Biol. 2017 Jun 16;6(6):936-942. doi: 10.1021/acssynbio.6b00309. Epub 2017 Mar 10.
2
Molecular basis, applications and challenges of CRISPR/Cas9: a continuously evolving tool for genome editing.
Brief Funct Genomics. 2017 Jul 1;16(4):211-216. doi: 10.1093/bfgp/elw038.
3
Rapidly evolving homing CRISPR barcodes.
Nat Methods. 2017 Feb;14(2):195-200. doi: 10.1038/nmeth.4108. Epub 2016 Dec 5.
4
Synthetic recording and in situ readout of lineage information in single cells.
Nature. 2017 Jan 5;541(7635):107-111. doi: 10.1038/nature20777. Epub 2016 Nov 21.
5
The Ties That Bind: Mapping the Dynamic Enhancer-Promoter Interactome.
Cell. 2016 Nov 17;167(5):1163-1166. doi: 10.1016/j.cell.2016.10.054.
6
Defining cell type with chromatin profiling.
Nat Biotechnol. 2016 Nov 8;34(11):1126-1128. doi: 10.1038/nbt.3724.
7
Organization and function of the 3D genome.
Nat Rev Genet. 2016 Oct 14;17(11):661-678. doi: 10.1038/nrg.2016.112.
8
United Nations meeting on antimicrobial resistance.
Bull World Health Organ. 2016 Sep 1;94(9):638-639. doi: 10.2471/BLT.16.020916.
9
High-resolution interrogation of functional elements in the noncoding genome.
Science. 2016 Sep 30;353(6307):1545-1549. doi: 10.1126/science.aaf7613.
10
Systematic mapping of functional enhancer-promoter connections with CRISPR interference.
Science. 2016 Nov 11;354(6313):769-773. doi: 10.1126/science.aag2445. Epub 2016 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验