Medioni Caroline, Besse Florence
Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France.
Methods Mol Biol. 2018;1649:1-28. doi: 10.1007/978-1-4939-7213-5_1.
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
在过去十年中,我们对转录组复杂性和调控的认识发生了一场革命。我们知识的这一显著扩展很大程度上源于高通量方法的出现,以及随后的发现,即高达90%的真核基因组被转录,从而产生了意想不到的大量非编码RNA(Hangauer等人,2014年,15(4):112)。除了导致新的非编码RNA种类的鉴定外,全转录组研究还揭示了控制RNA加工、成熟或翻译的转录后调控机制的新层面,每一层面都有助于基因表达的精确和动态调控。值得注意的是,系统水平研究的发展伴随着单细胞中单个RNA分子可视化的巨大进展,以至于现在可以以单分子分辨率对RNA种类从产生到翻译或降解进行成像。以前所未有的时空分辨率定量监测单个分子的命运,是理解RNA调控不同步骤背后分子机制的关键。这也揭示了RNA分布或调控中生物学相关的细胞内和细胞间异质性。最近,成像技术和高通量技术的融合导致了空间分辨转录组技术的出现,这些技术提供了一种在保留空间信息的同时进行大规模分析的方法。通过生成关于单细胞RNA含量甚至亚细胞RNA分布的全转录组数据,这些方法为细胞和器官水平的广泛网络水平研究开辟了道路,并有望大力改善疾病的诊断和治疗。在本章引言中,我们强调了旨在检测和可视化RNA分子的最新技术如何促成了全新研究领域的出现,以及我们对基因表达调控理解的巨大进展。