Suppr超能文献

在各种表面上进行晶体取向控制的单晶纳米线阵列的纳米移植印刷。

Nanotransplantation Printing of Crystallographic-Orientation-Controlled Single-Crystalline Nanowire Arrays on Diverse Surfaces.

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Powder Technology Department, Korea Institute of Materials Science (KIMS) , 797 Changwondaero, Changwon 51508, Republic of Korea.

出版信息

ACS Nano. 2017 Nov 28;11(11):11642-11652. doi: 10.1021/acsnano.7b06696. Epub 2017 Nov 13.

Abstract

The fabrication of a highly ordered array of single-crystalline nanostructures prepared from solution-phase or vapor-phase synthesis methods is extremely challenging due to multiple difficulties of spatial arrangement and control of crystallographic orientation. Herein, we introduce a nanotransplantation printing (NTPP) technique for the reliable fabrication, transfer, and arrangement of single-crystalline Si nanowires (NWs) on diverse substrates. NTPP entails (1) formation of nanoscale etch mask patterns on conventional low-cost Si via nanotransfer printing, (2) two-step combinatorial plasma etching for defining Si NWs, and (3) detachment and transfer of the NWs onto various receiver substrates using an infiltration-type polymeric transfer medium and a solvent-assisted adhesion switching mechanism. Using this approach, high-quality, highly ordered Si NWs can be formed on almost any type of surface including flexible plastic substrates, biological surfaces, and deep-trench structures. Moreover, NTPP provides controllability of the crystallographic orientation of NWs, which is confirmed by the successful generation of (100)- and (110)-oriented Si NWs with different properties. The outstanding electrical properties of the NWs were confirmed by fabricating and characterizing Schottky junction field-effect transistors. Furthermore, exploiting the highly flexible nature of the NWs, a high-performance piezoresistive strain sensor, with a high gauge factor over 200 was realized.

摘要

由于空间排列和控制晶体取向的多重困难,用溶液相或气相合成方法制备的高度有序的单晶纳米结构阵列的制造极具挑战性。在此,我们引入了一种纳米移植打印(NTPP)技术,用于可靠地制造、转移和排列单晶硅纳米线(NWs)在各种衬底上。NTPP 需要(1)通过纳米转移印刷在传统低成本 Si 上形成纳米级的刻蚀掩模图案,(2)两步组合等离子体刻蚀来定义 Si NWs,以及(3)使用渗透型聚合物转移介质和溶剂辅助粘附切换机制将 NWs 从基底上分离和转移到各种接收基底上。使用这种方法,可以在几乎任何类型的表面(包括柔性塑料基底、生物表面和深槽结构)上形成高质量、高度有序的 Si NWs。此外,NTPP 提供了 NWs 晶体取向的可控性,这通过成功生成具有不同性质的(100)和(110)取向的 Si NWs 得到了证实。通过制造和表征肖特基结场效应晶体管,证实了 NWs 的出色电性能。此外,利用 NWs 的高度柔韧性,实现了具有超过 200 的高应变系数的高性能压阻应变传感器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验