Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
ACS Nano. 2021 Jan 26;15(1):904-915. doi: 10.1021/acsnano.0c07503. Epub 2020 Dec 18.
Wafer-scale nanoribbon field-effect transistor (FET) biosensors fabricated by straightforward top-down processes are demonstrated as sensing platforms with high sensitivity to a broad range of biological targets. Nanoribbons with 350 nm widths (700 nm pitch) were patterned by chemical lift-off lithography using high-throughput, low-cost commercial digital versatile disks (DVDs) as masters. Lift-off lithography was also used to pattern ribbons with 2 μm or 20 μm widths (4 or 40 μm pitches, respectively) using masters fabricated by photolithography. For all widths, highly aligned, quasi-one-dimensional (1D) ribbon arrays were produced over centimeter length scales by sputtering to deposit 20 nm thin-film InO as the semiconductor. Compared to 20 μm wide microribbons, FET sensors with 350 nm wide nanoribbons showed higher sensitivity to pH over a broad range (pH 5 to 10). Nanoribbon FETs functionalized with a serotonin-specific aptamer demonstrated larger responses to equimolar serotonin in high ionic strength buffer than those of microribbon FETs. Field-effect transistors with 350 nm wide nanoribbons functionalized with single-stranded DNA showed greater sensitivity to detecting complementary DNA hybridization 20 μm microribbon FETs. In all, we illustrate facile fabrication and use of large-area, uniform InO nanoribbon FETs for ion, small-molecule, and oligonucleotide detection where higher surface-to-volume ratios translate to better detection sensitivities.
晶圆级纳米带场效应晶体管 (FET) 生物传感器通过简单的自上而下工艺制造,作为具有高灵敏度的传感平台,可广泛应用于各种生物靶标。通过化学剥离光刻技术,使用高通量、低成本的商业数字通用光盘 (DVD) 作为母版,可对 350nm 宽(700nm 间距)的纳米带进行图案化。通过光刻制造的母版,也可使用剥离光刻技术对 2μm 或 20μm 宽的纳米带进行图案化(分别为 4μm 或 40μm 间距)。对于所有宽度,通过溅射沉积 20nm 厚的 InO 作为半导体,可在厘米级长度范围内产生高度对齐的准一维 (1D) 纳米带阵列。与 20μm 宽的微带相比,350nm 宽的纳米带 FET 传感器在较宽的 pH 范围内(pH 5 到 10)具有更高的 pH 灵敏度。经血清素特异性适体功能化的纳米带 FET 对高离子强度缓冲液中等摩尔血清素的响应大于微带 FET。经单链 DNA 功能化的 350nm 宽纳米带 FET 对互补 DNA 杂交的检测灵敏度大于 20μm 宽微带 FET。总之,我们说明了通过简单的制造工艺和使用大面积、均匀的 InO 纳米带 FET 来进行离子、小分子和寡核苷酸检测,其中较大的比表面积与体积比可转化为更好的检测灵敏度。