Suppr超能文献

基于模板的丝素蛋白在纤维素纳米纤维上的组装用于超快水传输的坚固纳米结构。

Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport.

机构信息

State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University , Chengdu 610065, China.

School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States.

出版信息

ACS Nano. 2017 Dec 26;11(12):12008-12019. doi: 10.1021/acsnano.7b04235. Epub 2017 Nov 17.

Abstract

The construction of multilength scaled hierarchical nanostructures from diverse natural components is critical in the progress toward all-natural nanocomposites with structural robustness and versatile added functionalities. Here, we report a spontaneous formation of peculiar "shish kebab" nanostructures with the periodic arrangement of silk fibroin domains along straight segments of cellulose nanofibers. We suggest that the formation of these shish kebab nanostructures is facilitated by the preferential organization of heterogeneous (β-sheets and amorphous silk) domains along the cellulose nanofiber driven by modulated axial distribution of crystalline planes, hydrogen bonding, and hydrophobic interactions as suggested by all-atom molecular dynamic simulations. Such shish kebab nanostructures enable the ultrathin membrane to possess open, transparent, mechanically robust interlocked networks with high mechanical performance with up to 30 GPa in stiffness and 260 MPa in strength. These nanoporous robust membranes allow for the extremely high water flux, up to 3.5 × 10 L h m bar combined with high rejection rate for various organic molecules, capability of capturing heavy metal ions and their further reduction into metal nanoparticles for added SERS detection capability and catalytic functionalities.

摘要

从各种天然成分构建多层次的分级纳米结构对于具有结构鲁棒性和多功能附加功能的全天然纳米复合材料的发展至关重要。在这里,我们报告了一种奇特的“串状”纳米结构的自发形成,其中丝素蛋白结构域沿着纤维素纳米纤维的直段呈周期性排列。我们提出,这些串状纳米结构的形成是由纤维素纳米纤维驱动的异质(β-折叠和无定形丝)结构域沿纤维素纳米纤维的优先组织促进的,这是由全原子分子动力学模拟表明的晶面调制轴向分布、氢键和疏水力共同作用。这种串状纳米结构使超薄膜具有开放、透明、机械坚固的互锁网络,具有高达 30 GPa 的刚度和 260 MPa 的强度的高机械性能。这些纳米多孔坚固的膜具有极高的水通量,高达 3.5×10 L h m bar,同时对各种有机分子具有高截留率,能够捕获重金属离子,并进一步将其还原为金属纳米颗粒,从而具有增强的 SERS 检测能力和催化功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验