Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Illinois, IL 61801, USA.
Biomed Microdevices. 2011 Aug;13(4):671-82. doi: 10.1007/s10544-011-9537-3.
Solid-state nanopore sensors are highly versatile platforms for the rapid, label-free electrical detection and analysis of single molecules, applicable to next generation DNA sequencing. The versatility of this technology allows for both large scale device integration and interfacing with biological systems. Here we report on the development of a hybrid biological solid-state nanopore platform that incorporates a highly mobile lipid bilayer on a single solid-state Al(2)O(3) nanopore sensor, for the potential reconstitution of ion channels and biological nanopores. Such a system seeks to combine the superior electrical, thermal, and mechanical stability of Al(2)O(3) solid-state nanopores with the chemical specificity of biological nanopores. Bilayers on Al(2)O(3) exhibit higher diffusivity than those formed on TiO(2) and SiO(2) substrates, attributed to the presence of a thick hydration layer on Al(2)O(3), a key requirement to preserving the biological functionality of reconstituted membrane proteins. Molecular dynamics simulations demonstrate that the electrostatic repulsion between the dipole of the DOPC headgroup and the positively charged Al(2)O(3) surface may be responsible for the enhanced thickness of this hydration layer. Lipid bilayer coated Al(2)O(3) nanopore sensors exhibit excellent electrical properties and enhanced mechanical stability (GΩ seals for over 50 h), making this technology ideal for use in ion channel electrophysiology, the screening of ion channel active drugs and future integration with biological nanopores such as α-hemolysin and MspA for rapid single molecule DNA sequencing. This technology can find broad application in bio-nanotechnology.
固态纳米孔传感器是一种高度通用的平台,可用于快速、无标记的电检测和分析单个分子,适用于下一代 DNA 测序。该技术的多功能性允许大规模设备集成和与生物系统接口。在这里,我们报告了一种混合生物固态纳米孔平台的开发,该平台在单个固态 Al(2)O(3)纳米孔传感器上整合了一个高度可移动的脂质双层,用于潜在地重建离子通道和生物纳米孔。这样的系统旨在结合 Al(2)O(3)固态纳米孔卓越的电气、热和机械稳定性与生物纳米孔的化学特异性。与 TiO(2)和 SiO(2)基底上形成的双层相比,Al(2)O(3)上的双层具有更高的扩散率,这归因于 Al(2)O(3)上存在厚的水合层,这是保持重建膜蛋白生物功能的关键要求。分子动力学模拟表明,DOPC 头基偶极子与带正电荷的 Al(2)O(3)表面之间的静电排斥可能是这种水合层增厚的原因。脂质双层涂覆的 Al(2)O(3)纳米孔传感器具有出色的电气性能和增强的机械稳定性(超过 50 小时的 GΩ 密封),使其成为离子通道电生理学、离子通道活性药物筛选以及未来与α-溶血素和 MspA 等生物纳米孔集成的理想选择,用于快速单分子 DNA 测序。这项技术可以在生物纳米技术中得到广泛应用。