Widyaningrum Rini, Astuti Eha Renwi, Soetojo Adioro, Faadiya Amalia Nur, Nurrachman Aga Satria, Kinanggit Netya Dzihni, Iftikar Nasution Abdul Harits
Oral and Maxillofacial Radiology Specialist Study Program, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, 60132, Indonesia.
Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta No.1, Sekip Utara, Yogyakarta, 55281, Indonesia.
J Oral Biol Craniofac Res. 2025 Nov-Dec;15(6):1392-1399. doi: 10.1016/j.jobcr.2025.08.019. Epub 2025 Aug 28.
Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands. This study aims to evaluate the performance of a hybrid two-stage CNN integrating Mask R-CNN with DenseNet169 for detecting and staging periodontitis in panoramic radiographs.
A total of 600 panoramic radiographs were divided into training (70 %), validation (10 %), and testing (20 %) datasets, with an additional 100 external radiographs used as a final testing set. Four types of annotations were applied: tooth segmentation, radiographic bone loss (RBL), cementoenamel junction (CEJ) area, and periodontitis staging (normal, stage 1, 2, 3, and 4). Mask R-CNN was employed for segmentation training to detect teeth, CEJ, and RBL, while DenseNet169 served as the classifier for periodontitis staging.
The hybrid two-stage CNN achieved a periodontitis staging performance on the external testing set with specificity and accuracy of 0.88 and 0.80, respectively.
These results demonstrate the potential of this hybrid two-stage CNN model as a diagnostic aid for periodontitis in panoramic radiographs. Further development of this approach could enhance its clinical applicability and accuracy.
牙周病是一种炎症性疾病,会对牙齿支持结缔组织造成慢性损害,导致成年人牙齿脱落。诊断牙周炎需要进行临床和影像学检查,全景X线片对于识别和评估其严重程度及分期至关重要。卷积神经网络(CNN)是一种用于视觉数据分析的深度学习方法,而密集卷积网络(DenseNet)利用层间直接前馈连接,能够以降低的计算需求实现高性能的计算机视觉任务。本研究旨在评估一种将Mask R-CNN与DenseNet169相结合的混合两阶段CNN在全景X线片中检测和分期牙周炎的性能。
总共600张全景X线片被分为训练集(70%)、验证集(10%)和测试集(20%),另外100张外部X线片用作最终测试集。应用了四种类型的标注:牙齿分割、放射学骨丧失(RBL)、牙骨质釉质界(CEJ)面积和牙周炎分期(正常、1期、2期、3期和4期)。采用Mask R-CNN进行分割训练以检测牙齿、CEJ和RBL,而DenseNet169用作牙周炎分期的分类器。
混合两阶段CNN在外部测试集上实现了牙周炎分期性能,特异性和准确性分别为0.88和0.80。
这些结果证明了这种混合两阶段CNN模型作为全景X线片中牙周炎诊断辅助工具的潜力。该方法的进一步发展可以提高其临床适用性和准确性。