Suppr超能文献

预测变化世界中的捕食者识别

Predicting Predator Recognition in a Changing World.

机构信息

Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA.

出版信息

Trends Ecol Evol. 2018 Feb;33(2):106-115. doi: 10.1016/j.tree.2017.10.009. Epub 2017 Nov 10.

Abstract

Through natural as well as anthropogenic processes, prey can lose historically important predators and gain novel ones. Both predator gain and loss frequently have deleterious consequences. While numerous hypotheses explain the response of individuals to novel and familiar predators, we lack a unifying conceptual model that predicts the fate of prey following the introduction of a novel or a familiar (reintroduced) predator. Using the concept of eco-evolutionary experience, we create a new framework that allows us to predict whether prey will recognize and be able to discriminate predator cues from non-predator cues and, moreover, the likely persistence outcomes for 11 different predator-prey interaction scenarios. This framework generates useful and testable predictions for ecologists, conservation scientists, and decision-makers.

摘要

通过自然和人为过程,猎物可能会失去历史上重要的捕食者,而获得新的捕食者。捕食者的获得和失去通常都会带来有害的后果。虽然有许多假说可以解释个体对新的和熟悉的捕食者的反应,但我们缺乏一个统一的概念模型来预测在引入新的或熟悉的(重新引入的)捕食者后,猎物的命运。利用生态进化经验的概念,我们创建了一个新的框架,使我们能够预测猎物是否能够识别并能够区分捕食者的线索和非捕食者的线索,而且,对于 11 种不同的捕食者-猎物相互作用场景,还可以预测可能的持续结果。这个框架为生态学家、保护科学家和决策者提供了有用且可测试的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验