Suppr超能文献

基于放射组学的非小细胞肺癌预后分析。

Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer.

机构信息

Dept. of Medical Imaging, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.

Dept. of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.

出版信息

Sci Rep. 2017 Apr 18;7:46349. doi: 10.1038/srep46349.

Abstract

Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from radiological images. Radiomic features have been shown to provide prognostic value in predicting clinical outcomes in several studies. However, several challenges including feature redundancy, unbalanced data, and small sample sizes have led to relatively low predictive accuracy. In this study, we explore different strategies for overcoming these challenges and improving predictive performance of radiomics-based prognosis for non-small cell lung cancer (NSCLC). CT images of 112 patients (mean age 75 years) with NSCLC who underwent stereotactic body radiotherapy were used to predict recurrence, death, and recurrence-free survival using a comprehensive radiomics analysis. Different feature selection and predictive modeling techniques were used to determine the optimal configuration of prognosis analysis. To address feature redundancy, comprehensive analysis indicated that Random Forest models and Principal Component Analysis were optimum predictive modeling and feature selection methods, respectively, for achieving high prognosis performance. To address unbalanced data, Synthetic Minority Over-sampling technique was found to significantly increase predictive accuracy. A full analysis of variance showed that data endpoints, feature selection techniques, and classifiers were significant factors in affecting predictive accuracy, suggesting that these factors must be investigated when building radiomics-based predictive models for cancer prognosis.

摘要

放射组学通过从放射图像中提取大量定量特征来描述肿瘤表型。多项研究表明,放射组学特征可提供预后价值,用于预测临床结局。然而,包括特征冗余、数据不平衡和样本量小在内的多个挑战导致预测准确性相对较低。在这项研究中,我们探讨了克服这些挑战并提高基于放射组学的非小细胞肺癌(NSCLC)预后预测性能的不同策略。使用 112 名接受立体定向体放射治疗的 NSCLC 患者的 CT 图像,使用综合放射组学分析来预测复发、死亡和无复发生存。使用不同的特征选择和预测建模技术来确定预后分析的最佳配置。为了解决特征冗余问题,综合分析表明,随机森林模型和主成分分析分别是实现高预后性能的最佳预测建模和特征选择方法。为了解决数据不平衡问题,发现合成少数过采样技术可显著提高预测准确性。方差分析显示,数据终点、特征选择技术和分类器是影响预测准确性的重要因素,这表明在构建基于放射组学的癌症预后预测模型时必须研究这些因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c33/5394465/4ad949b0b241/srep46349-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验