Suppr超能文献

通过AP-ISA双聚类分析乳腺癌亚型

Analysis of breast cancer subtypes by AP-ISA biclustering.

作者信息

Yang Liying, Shen Yunyan, Yuan Xiguo, Zhang Junying, Wei Jianhua

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.

出版信息

BMC Bioinformatics. 2017 Nov 14;18(1):481. doi: 10.1186/s12859-017-1926-z.

Abstract

BACKGROUND

Gene expression profiling has led to the definition of breast cancer molecular subtypes: Basal-like, HER2-enriched, LuminalA, LuminalB and Normal-like. Different subtypes exhibit diverse responses to treatment. In the past years, several traditional clustering algorithms have been applied to analyze gene expression profiling. However, accurate identification of breast cancer subtypes, especially within highly variable LuminalA subtype, remains a challenge. Furthermore, the relationship between DNA methylation and expression level in different breast cancer subtypes is not clear.

RESULTS

In this study, a modified ISA biclustering algorithm, termed AP-ISA, was proposed to identify breast cancer subtypes. Comparing with ISA, AP-ISA provides the optimized strategy to select seeds and thresholds in the circumstance that prior knowledge is absent. Experimental results on 574 breast cancer samples were evaluated using clinical ER/PR information, PAM50 subtypes and the results of five peer to peer methods. One remarkable point in the experiment is that, AP-ISA divided the expression profiles of the luminal samples into four distinct classes. Enrichment analysis and methylation analysis showed obvious distinction among the four subgroups. Tumor variability within the Luminal subtype is observed in the experiments, which could contribute to the development of novel directed therapies.

CONCLUSIONS

Aiming at breast cancer subtype classification, a novel biclustering algorithm AP-ISA is proposed in this paper. AP-ISA classifies breast cancer into seven subtypes and we argue that there are four subtypes in luminal samples. Comparison with other methods validates the effectiveness of AP-ISA. New genes that would be useful for targeted treatment of breast cancer were also obtained in this study.

摘要

背景

基因表达谱分析已促成了乳腺癌分子亚型的定义:基底样型、HER2富集型、腔面A型、腔面B型和正常样型。不同亚型对治疗表现出不同反应。在过去几年中,几种传统聚类算法已被应用于分析基因表达谱。然而,准确识别乳腺癌亚型,尤其是在高度可变的腔面A型亚型内,仍然是一项挑战。此外,不同乳腺癌亚型中DNA甲基化与表达水平之间的关系尚不清楚。

结果

在本研究中,提出了一种改进的ISA双聚类算法,称为AP-ISA,用于识别乳腺癌亚型。与ISA相比,AP-ISA在缺乏先验知识的情况下提供了选择种子和阈值的优化策略。使用临床雌激素受体/孕激素受体(ER/PR)信息、PAM50亚型以及五种对等方法的结果对574个乳腺癌样本的实验结果进行了评估。实验中的一个显著点是,AP-ISA将腔面样本的表达谱分为四个不同的类别。富集分析和甲基化分析显示这四个亚组之间存在明显差异。在实验中观察到腔面亚型内的肿瘤变异性,这可能有助于新型靶向治疗的开发。

结论

针对乳腺癌亚型分类,本文提出了一种新型双聚类算法AP-ISA。AP-ISA将乳腺癌分为七种亚型,并且我们认为腔面样本中有四种亚型。与其他方法的比较验证了AP-ISA的有效性。本研究还获得了对乳腺癌靶向治疗有用的新基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f3/5686903/42ff98fd9178/12859_2017_1926_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验