Suppr超能文献

超声化学合成 FeO@NH-介孔硅@聚吡咯/钯:一种用于催化应用的核/双层壳纳米复合材料。

Sonochemical synthesis of FeO@NH-mesoporous silica@Polypyrrole/Pd: A core/double shell nanocomposite for catalytic applications.

机构信息

Laboratory of Materials, Molecules and Applications, IPEST, University of Carthage, Sidi Bou Said Road, B.P. 51 2070, La Marsa, Tunisia; Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia.

Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320 Thiais, France.

出版信息

Ultrason Sonochem. 2018 Mar;41:551-561. doi: 10.1016/j.ultsonch.2017.10.021. Epub 2017 Oct 24.

Abstract

There is a growing interest in sonochemistry for either the controlled design of nanostructured materials or for the synthesis of polymers and polymer composites. It is fast and highly efficient method that provides materials with exceptional and enhanced structural and chemical properties. Herein, we take advantage of the versatile sonochemical process in order to design core/double layered shell nanocomposite denoted by FeO@NH-mesoporous silica@ PPy/Pd. This magnetic, multicomponent material was designed in a three-step sono-process: (i) synthesis of magnetic core, (ii) cure of mesoporous silica, and (iii) sonochemical deposition of PPy/Pd. This last step was achieved within 1 h, a much shorter duration compared to conventional routes which usually take several hours to few days. The final nanocomposite can be recovered with a simple magnetic stick. X-ray diffraction patterns highlighted the presence of zerovalent palladium on the surface of the magnetic nanocomposite. The catalytic activity of the solid support was investigated by the study of the p-nitrophenol (p-NP) reduction and the Methyl Orange (MO) degradation in aqueous media. Results showed a very high catalytic efficiency, a high conversion yield of p-NP into 4-aminophenol (more than 94%) and an almost entire degradation of MO (99%) with a fast kinetics fitting to the first order model. This work demonstrates conclusively the benefits of sonochemistry in the design of metal nanoparticle-decorated inorganic/polymer hybrid system with outstanding performances.

摘要

超声化学在纳米结构材料的可控设计或聚合物和聚合物复合材料的合成方面引起了越来越多的关注。它是一种快速高效的方法,可以为材料提供特殊的增强结构和化学性能。在本文中,我们利用多功能的超声化学过程来设计核/双层壳纳米复合材料,标记为 FeO@NH-介孔硅@PPy/Pd。这种磁性多组分材料是通过三步超声过程设计的:(i)合成磁性核,(ii)介孔硅的固化,和(iii)PPy/Pd 的超声沉积。最后一步在 1 小时内完成,与传统方法相比,时间大大缩短,传统方法通常需要几个小时到几天。最终的纳米复合材料可以用简单的磁棒回收。X 射线衍射图谱突出显示了磁性纳米复合材料表面存在零价钯。通过研究在水介质中对对硝基苯酚(p-NP)的还原和对甲基橙(MO)的降解,研究了固体载体的催化活性。结果表明,该催化剂具有非常高的催化效率,p-NP 转化为 4-氨基酚(超过 94%)的转化率高,MO 几乎完全降解(99%),动力学拟合符合一级模型。这项工作明确证明了超声化学在设计具有优异性能的金属纳米粒子修饰的无机/聚合物杂化系统中的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验