文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于优化磁性纳米颗粒在磁流体热疗中加热效率的简易声化学方法。

Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia.

作者信息

Fuentes-García Jesús Antonio, Carvalho Alavarse Alex, Moreno Maldonado Ana Carolina, Toro-Córdova Alfonso, Ibarra Manuel Ricardo, Goya Gerardo Fabián

机构信息

Instituto de Nanociencia de Aragón (INA) & Laboratory of Advanced Microscopies (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain.

Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional, UPIITA-IPN, Av. IPN 2580, Ticoman 07340, Mexico.

出版信息

ACS Omega. 2020 Oct 7;5(41):26357-26364. doi: 10.1021/acsomega.0c02212. eCollection 2020 Oct 20.


DOI:10.1021/acsomega.0c02212
PMID:33110963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7581078/
Abstract

We developed a fast, single-step sonochemical strategy for the green manufacturing of magnetite (FeO) magnetic nanoparticles (MNPs), using iron sulfate (FeSO) as the sole source of iron and sodium hydroxide (Na(OH)) as the reducing agent in an aqueous medium. The designed methodology reduces the environmental impact of toxic chemical compounds and minimizes the infrastructure requirements and reaction times down to minutes. The Na(OH) concentration has been varied to optimize the final size and magnetic properties of the MNPs and to minimize the amount of corrosive byproducts of the reaction. The change in the starting FeSO concentration (from 5.4 to 43.1 mM) changed the particle sizes from (20 ± 3) to (58 ± 8) nm. These magnetite MNPs are promising for biomedical applications due to their negative surface charge, good heating properties (≈324 ± 2 W/g), and low cytotoxic effects. These results indicate the potential of this controlled, easy, and rapid ultrasonic irradiation method to prepare nanomaterials with enhanced properties and good potential for use as magnetic hyperthermia agents.

摘要

我们开发了一种快速、单步的声化学策略,用于在水介质中以硫酸铁(FeSO)作为铁的唯一来源,氢氧化钠(Na(OH))作为还原剂,绿色制造磁铁矿(FeO)磁性纳米颗粒(MNPs)。所设计的方法减少了有毒化合物对环境的影响,并将基础设施要求和反应时间缩短至几分钟。已改变NaOH浓度以优化MNPs的最终尺寸和磁性,并使反应中腐蚀性副产物的量最小化。起始FeSO浓度(从5.4到43.1 mM)的变化使粒径从(20±3)nm变为(58±8)nm。这些磁铁矿MNPs因其负表面电荷、良好的加热性能(≈324±2 W/g)和低细胞毒性作用而在生物医学应用中具有前景。这些结果表明了这种可控、简便且快速的超声辐照方法在制备具有增强性能且有潜力用作磁热疗剂的纳米材料方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/0fb51edca640/ao0c02212_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/576ced0cae97/ao0c02212_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/57ac688aa8d6/ao0c02212_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/303639a31dd6/ao0c02212_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/4c9258ebd7c0/ao0c02212_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/0fb51edca640/ao0c02212_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/576ced0cae97/ao0c02212_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/57ac688aa8d6/ao0c02212_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/303639a31dd6/ao0c02212_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/4c9258ebd7c0/ao0c02212_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49b0/7581078/0fb51edca640/ao0c02212_0006.jpg

相似文献

[1]
Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia.

ACS Omega. 2020-10-7

[2]
Morphology-Controlled Synthesis of Magnetic Nanoparticles Using Extracts of 'Hairy' Roots: Environmental Application and Toxicity Evaluation.

Nanomaterials (Basel). 2022-11-28

[3]
The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake.

Biomaterials. 2014-5-9

[4]
The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles.

Int J Nanomedicine. 2016-3-23

[5]
Magnetic nanoparticles adapted for specific biomedical applications.

Biomed Tech (Berl). 2015-10

[6]
Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties.

Polymers (Basel). 2017-12-22

[7]
Tc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent.

Mater Sci Eng C Mater Biol Appl. 2019-4-13

[8]
Synthesis and characterization of monodispersed water dispersible FeO nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition.

Sci Rep. 2018-10-3

[9]
Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis.

J Cell Physiol. 2018-12-10

[10]
A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

Mater Sci Eng C Mater Biol Appl. 2016-3-15

引用本文的文献

[1]
Synthesis of nanoparticles of feroxyhyte doped with lanthanum by a sonochemical method.

Ultrason Sonochem. 2025-7

[2]
Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment.

Discov Nano. 2024-9-28

[3]
Synthesis and Modification of a Natural Polymer with the Participation of Metal Nanoparticles, Study of Their Composition and Properties.

Polymers (Basel). 2024-1-18

[4]
Electrochemical Detection of 4-Nitrophenol Using a Novel SrTiO/Ag/rGO Composite.

ACS Omega. 2023-11-3

[5]
Recent Update Roles of Magnetic Nanoparticles in Circulating Tumor Cell (CTC)/Non-CTC Separation.

Pharmaceutics. 2023-10-17

[6]
Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study.

Pharmaceutics. 2023-7-19

[7]
How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature.

Int J Nanomedicine. 2023

[8]
Review on magnetic spinel ferrite (MFeO) nanoparticles: From synthesis to application.

Heliyon. 2023-5-26

[9]
Magnetite-Based Biosensors and Molecular Logic Gates: From Magnetite Synthesis to Application.

Biosensors (Basel). 2023-2-21

[10]
Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics.

Materials (Basel). 2022-4-1

本文引用的文献

[1]
Tunable FeO Nanorods for Enhanced Magnetic Hyperthermia Performance.

Sci Rep. 2020-5-20

[2]
Surface Study of FeO Nanoparticles Functionalized With Biocompatible Adsorbed Molecules.

Front Chem. 2019-10-4

[3]
The Effect of Tissue-Mimicking Phantom Compressibility on Magnetic Hyperthermia.

Nanomaterials (Basel). 2019-5-25

[4]
Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles.

Biochem Biophys Rep. 2018-1-8

[5]
Sonochemical synthesis of FeO@NH-mesoporous silica@Polypyrrole/Pd: A core/double shell nanocomposite for catalytic applications.

Ultrason Sonochem. 2017-10-24

[6]
Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts.

Ultrason Sonochem. 2017-10-3

[7]
A simple approach for the sonochemical synthesis of FeO-guargum nanocomposite and its catalytic reduction of p-nitroaniline.

Ultrason Sonochem. 2018-1

[8]
Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells.

Sci Rep. 2017-8-17

[9]
How sonochemistry contributes to green chemistry?

Ultrason Sonochem. 2018-1

[10]
Nanostructured Materials Synthesis Using Ultrasound.

Top Curr Chem (Cham). 2017-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索