Rossi Ethan A, Granger Charles E, Sharma Robin, Yang Qiang, Saito Kenichi, Schwarz Christina, Walters Sarah, Nozato Koji, Zhang Jie, Kawakami Tomoaki, Fischer William, Latchney Lisa R, Hunter Jennifer J, Chung Mina M, Williams David R
Center for Visual Science, University of Rochester, Rochester, NY 14642;
Center for Visual Science, University of Rochester, Rochester, NY 14642.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):586-591. doi: 10.1073/pnas.1613445114. Epub 2017 Jan 3.
Although imaging of the living retina with adaptive optics scanning light ophthalmoscopy (AOSLO) provides microscopic access to individual cells, such as photoreceptors, retinal pigment epithelial cells, and blood cells in the retinal vasculature, other important cell classes, such as retinal ganglion cells, have proven much more challenging to image. The near transparency of inner retinal cells is advantageous for vision, as light must pass through them to reach the photoreceptors, but it has prevented them from being directly imaged in vivo. Here we show that the individual somas of neurons within the retinal ganglion cell (RGC) layer can be imaged with a modification of confocal AOSLO, in both monkeys and humans. Human images of RGC layer neurons did not match the quality of monkey images for several reasons, including safety concerns that limited the light levels permissible for human imaging. We also show that the same technique applied to the photoreceptor layer can resolve ambiguity about cone survival in age-related macular degeneration. The capability to noninvasively image RGC layer neurons in the living eye may one day allow for a better understanding of diseases, such as glaucoma, and accelerate the development of therapeutic strategies that aim to protect these cells. This method may also prove useful for imaging other structures, such as neurons in the brain.
尽管采用自适应光学扫描光检眼镜(AOSLO)对活体视网膜进行成像可实现对单个细胞的微观观察,比如光感受器、视网膜色素上皮细胞以及视网膜血管系统中的血细胞,但事实证明,对其他重要细胞类别(如视网膜神经节细胞)进行成像则困难得多。视网膜内层细胞近乎透明,这对视觉有益,因为光线必须穿过它们才能抵达光感受器,但这也使得它们无法在活体中直接成像。在此,我们表明,通过对共焦AOSLO进行改进,可对猴子和人类视网膜神经节细胞(RGC)层内的神经元个体胞体进行成像。由于包括安全顾虑限制了人体成像允许的光强度等多种原因,人类RGC层神经元的图像质量不及猴子图像。我们还表明,将同样的技术应用于光感受器层,能够解决年龄相关性黄斑变性中视锥细胞存活情况的模糊问题。在活体眼中对RGC层神经元进行无创成像的能力,或许有朝一日能让人更好地了解青光眼等疾病,并加速旨在保护这些细胞的治疗策略的研发。该方法可能对成像其他结构(如大脑中的神经元)也有用处。