Suppr超能文献

采用生物信息学方法预测治疗乳腺癌的倍半萜烯、姜二酮和呋喃二烯的分子靶标和通路。

Predicted molecular targets and pathways for germacrone, curdione, and furanodiene in the treatment of breast cancer using a bioinformatics approach.

机构信息

Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC); Key Laboratory of Human Disease Comparative Medicine, National Health and Family Planning Commission; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine; Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021, China.

Department of Urology, Shanxian Central Hospital, Heze, Shandong, 274300, China.

出版信息

Sci Rep. 2017 Nov 14;7(1):15543. doi: 10.1038/s41598-017-15812-9.

Abstract

Germacrone, curdione, and furanodiene have been shown to be useful in the treatment of breast cancer but the pharmacological mechanism of action is unclear. In this paper, we explored a new method to study the molecular network and function of Traditional Chinese Medicine (TCM) herbs and their corresponding ingredients with bioinformatics tools, including PubChem Compound Database, BATMAN-TCM, SystemsDock, Coremine Medical, Gene ontology, and KEGG. Eleven targeted genes/proteins, 4 key pathways, and 10 biological processes were identified to participate in the mechanism of action in treating breast cancer with germacrone, curdione, and furanodiene. The information achieved by the bioinformatics tools was useful to interpretation the molecular mechanism for the treatment of germacrone, curdione, and furanodiene on breast cancers.

摘要

倍半萜类化合物榄香烯、莪术二酮和呋喃二烯已被证明可有效治疗乳腺癌,但作用机制尚不清楚。本研究采用生物信息学工具,包括 PubChem 化合物数据库、BATMAN-TCM、SystemsDock、Coremine Medical、GO 和 KEGG,探索了一种研究中药及其相应成分的分子网络和功能的新方法。鉴定出榄香烯、莪术二酮和呋喃二烯治疗乳腺癌的 11 个靶向基因/蛋白、4 个关键途径和 10 个生物学过程。生物信息学工具获得的信息有助于解释榄香烯、莪术二酮和呋喃二烯治疗乳腺癌的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6873/5686110/3b7f3c969058/41598_2017_15812_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验