Suppr超能文献

用于神经再生医学目的的干细胞追踪技术

Stem Cell Tracking Technologies for Neurological Regenerative Medicine Purposes.

作者信息

Zheng Yongtao, Huang Jiongwei, Zhu Tongming, Li Ronggang, Wang Zhifu, Ma Fukai, Zhu Jianhong

机构信息

Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China.

Department of Urinary Surgery, Zhongshan Hospital of Fudan University, Shanghai, China.

出版信息

Stem Cells Int. 2017;2017:2934149. doi: 10.1155/2017/2934149. Epub 2017 Sep 12.

Abstract

The growing field of stem cell therapy is moving toward clinical trials in a variety of applications, particularly for neurological diseases. However, this translation of cell therapies into humans has prompted a need to create innovative and breakthrough methods for stem cell tracing, to explore the migration routes and its reciprocity with microenvironment targets in the body, to monitor and track the outcome after stem cell transplantation therapy, and to track the distribution and cell viability of transplanted cells noninvasively and longitudinally. Recently, a larger number of cell tracking methods in vivo were developed and applied in animals and humans, including magnetic resonance imaging, nuclear medicine imaging, and optical imaging. This review has been intended to summarize the current use of those imaging tools in tracking stem cells, detailing their main features and drawbacks, including image resolution, tissue penetrating depth, and biosafety aspects. Finally, we address that multimodality imaging method will be a more potential tracking tool in the future clinical application.

摘要

干细胞治疗这一不断发展的领域正朝着在多种应用中开展临床试验迈进,尤其是针对神经疾病。然而,将细胞疗法转化应用于人体促使人们需要创建创新的、突破性的干细胞追踪方法,以探索其迁移途径及其与体内微环境靶点的相互作用,监测和跟踪干细胞移植治疗后的结果,并以非侵入性和纵向方式追踪移植细胞的分布及细胞活力。最近,大量体内细胞追踪方法得以开发并应用于动物和人体,包括磁共振成像、核医学成像和光学成像。本综述旨在总结这些成像工具目前在追踪干细胞方面的应用,详细阐述其主要特点和缺点,包括图像分辨率、组织穿透深度和生物安全性等方面。最后,我们指出多模态成像方法将是未来临床应用中更具潜力的追踪工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff9a/5613625/640c58b956e3/SCI2017-2934149.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验