Maes Amadeus, Barahona Mauricio, Clopath Claudia
Bioengineering Department, Imperial College London, London, United Kingdom.
Mathematics Department, Imperial College London, London, United Kingdom.
PLoS Comput Biol. 2021 Mar 25;17(3):e1008866. doi: 10.1371/journal.pcbi.1008866. eCollection 2021 Mar.
Sequential behaviour is often compositional and organised across multiple time scales: a set of individual elements developing on short time scales (motifs) are combined to form longer functional sequences (syntax). Such organisation leads to a natural hierarchy that can be used advantageously for learning, since the motifs and the syntax can be acquired independently. Despite mounting experimental evidence for hierarchical structures in neuroscience, models for temporal learning based on neuronal networks have mostly focused on serial methods. Here, we introduce a network model of spiking neurons with a hierarchical organisation aimed at sequence learning on multiple time scales. Using biophysically motivated neuron dynamics and local plasticity rules, the model can learn motifs and syntax independently. Furthermore, the model can relearn sequences efficiently and store multiple sequences. Compared to serial learning, the hierarchical model displays faster learning, more flexible relearning, increased capacity, and higher robustness to perturbations. The hierarchical model redistributes the variability: it achieves high motif fidelity at the cost of higher variability in the between-motif timings.
序列行为通常是组合性的,且在多个时间尺度上有组织地进行:一组在短时间尺度上发展的单个元素(基序)被组合起来形成更长的功能序列(句法)。这种组织导致了一种自然层次结构,由于基序和句法可以独立习得,因此可有效地用于学习。尽管神经科学中有越来越多关于层次结构的实验证据,但基于神经网络的时间学习模型大多集中在串行方法上。在这里,我们介绍一种具有层次组织的脉冲神经元网络模型,旨在进行多时间尺度的序列学习。利用具有生物物理动机的神经元动力学和局部可塑性规则,该模型可以独立学习基序和句法。此外,该模型可以有效地重新学习序列并存储多个序列。与串行学习相比,层次模型显示出更快的学习速度、更灵活的重新学习能力、更大的容量以及对扰动更高的鲁棒性。层次模型重新分配了变异性:它以基序间时间间隔更高的变异性为代价实现了高基序保真度。