Suppr超能文献

对TZ1进行代谢工程改造以提高苹果酸产量。

Metabolic engineering of TZ1 for improved malic acid production.

作者信息

Zambanini Thiemo, Hosseinpour Tehrani Hamed, Geiser Elena, Sonntag Christiane K, Buescher Joerg M, Meurer Guido, Wierckx Nick, Blank Lars M

机构信息

iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany.

BRAIN AG, Darmstädter Straße 34-36, D-64673 Zwingenberg, Germany.

出版信息

Metab Eng Commun. 2017 Jan 17;4:12-21. doi: 10.1016/j.meteno.2017.01.002. eCollection 2017 Jun.

Abstract

RK089 has been found recently as a good natural malic acid producer from glycerol. This strain has previously undergone adaptive laboratory evolution for enhanced substrate uptake rate resulting in the strain TZ1. Medium optimization and investigation of process parameters enabled titers and rates that are able to compete with those of organisms overexpressing major parts of the underlying metabolic pathways. Metabolic engineering can likely further increase the efficiency of malate production by this organism, provided that basic genetic tools and methods can be established for this rarely used and relatively obscure species. Here we investigate and adapt existing molecular tools from for use in . Selection markers from that confer carboxin, hygromycin, nourseothricin, and phleomycin resistance are applicable in . A plasmid was constructed containing the -locus of RK089, resulting in site-specific integration into the genome. Using this plasmid, overexpression of pyruvate carboxylase, two malate dehydrogenases (, ), and two malate transporters (, ) was possible in TZ1 under control of the strong P promoter. Overexpression of , , , and increased the product (malate) to substrate (glycerol) yield by up to 54% in shake flasks reaching a titer of up to 120 g L. In bioreactor cultivations of TZ1 P and TZ1 P a drastically lowered biomass formation and glycerol uptake rate resulted in 29% (Ssu1) and 38% (Mdh2) higher specific production rates and 38% (Ssu1) and 46% (Mdh2) increased yields compared to the reference strain TZ1. Investigation of the product spectrum resulted in an 87% closed carbon balance with 134 g L malate and biomass (73 g L), succinate (20 g L), CO (7 g L), and α-ketoglutarate (8 g L) as main by-products. These results open up a wide range of possibilities for further optimization, especially combinatorial metabolic engineering to increase the flux from pyruvate to malic acid and to reduce by-product formation.

摘要

RK089最近被发现是一种从甘油中高效生产天然苹果酸的菌株。该菌株此前经过了适应性实验室进化,以提高底物摄取率,从而得到了TZ1菌株。培养基优化和工艺参数研究使得该菌株的滴度和产率能够与那些过表达基础代谢途径主要部分的生物体相竞争。如果能够为这种很少使用且相对 obscure 的物种建立基本的遗传工具和方法,代谢工程可能会进一步提高该生物体生产苹果酸的效率。在这里,我们研究并调整了现有的分子工具以便在该物种中使用。来自 confer carboxin、潮霉素、制霉菌素和博来霉素抗性的选择标记可用于该物种。构建了一个包含RK089 -位点的质粒,从而实现了在基因组中的位点特异性整合。使用该质粒,在强P启动子的控制下,丙酮酸羧化酶、两种苹果酸脱氢酶(,)和两种苹果酸转运蛋白(,)在TZ1中得以过表达。在摇瓶中,、、、的过表达使产物(苹果酸)与底物(甘油)的产率提高了54%,滴度高达120 g/L。在TZ1 P和TZ1 P的生物反应器培养中,与参考菌株TZ1相比,生物量形成和甘油摄取率大幅降低,导致比生产率提高了29%(Ssu1)和38%(Mdh2),产率提高了38%(Ssu1)和46%(Mdh2)。产物谱研究显示,以134 g/L苹果酸和生物量(73 g/L)、琥珀酸(20 g/L)、CO(7 g/L)和α -酮戊二酸(8 g/L)作为主要副产物,碳平衡闭合率达到87%。这些结果为进一步优化,特别是组合代谢工程以增加从丙酮酸到苹果酸的通量并减少副产物形成开辟了广泛的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7c5/5678829/745a88262a5a/gr1.jpg

相似文献

1
Metabolic engineering of TZ1 for improved malic acid production.
Metab Eng Commun. 2017 Jan 17;4:12-21. doi: 10.1016/j.meteno.2017.01.002. eCollection 2017 Jun.
2
Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations.
Biotechnol Biofuels. 2016 Jul 2;9:135. doi: 10.1186/s13068-016-0553-7. eCollection 2016.
3
Efficient malic acid production from glycerol with Ustilago trichophora TZ1.
Biotechnol Biofuels. 2016 Mar 17;9:67. doi: 10.1186/s13068-016-0483-4. eCollection 2016.
4
Draft Genome Sequence of Ustilago trichophora RK089, a Promising Malic Acid Producer.
Genome Announc. 2016 Jul 28;4(4):e00749-16. doi: 10.1128/genomeA.00749-16.
5
Efficient itaconic acid production from glycerol with TZ1.
Biotechnol Biofuels. 2017 May 19;10:131. doi: 10.1186/s13068-017-0809-x. eCollection 2017.
6
Phosphate limitation enhances malic acid production on nitrogen-rich molasses with Ustilago trichophora.
Biotechnol Biofuels Bioprod. 2024 Jul 3;17(1):92. doi: 10.1186/s13068-024-02543-z.
7
9
Integrated strain- and process design enable production of 220 g L itaconic acid with .
Biotechnol Biofuels. 2019 Nov 6;12:263. doi: 10.1186/s13068-019-1605-6. eCollection 2019.

引用本文的文献

1
Advancements in metabolic engineering: unlocking the potential of key organic acids for sustainable industrial applications.
Front Bioeng Biotechnol. 2025 Mar 11;13:1556516. doi: 10.3389/fbioe.2025.1556516. eCollection 2025.
2
Engineering growth phenotypes of Aspergillus oryzae for L-malate production.
Bioresour Bioprocess. 2023 Apr 5;10(1):25. doi: 10.1186/s40643-023-00642-7.
3
5
Fungal carboxylate transporters: recent manipulations and applications.
Appl Microbiol Biotechnol. 2023 Oct;107(19):5909-5922. doi: 10.1007/s00253-023-12720-z. Epub 2023 Aug 10.
6
Recent advances in producing food additive L-malate: Chassis, substrate, pathway, fermentation regulation and application.
Microb Biotechnol. 2023 Apr;16(4):709-725. doi: 10.1111/1751-7915.14206. Epub 2023 Jan 5.
7
Microbial Biosynthesis of L-Malic Acid and Related Metabolic Engineering Strategies: Advances and Prospects.
Front Bioeng Biotechnol. 2021 Sep 29;9:765685. doi: 10.3389/fbioe.2021.765685. eCollection 2021.
8
Acetate as substrate for L-malic acid production with Aspergillus oryzae DSM 1863.
Biotechnol Biofuels. 2021 Feb 23;14(1):48. doi: 10.1186/s13068-021-01901-5.
9
An Optimized for Itaconic Acid Production at Maximal Theoretical Yield.
J Fungi (Basel). 2020 Dec 31;7(1):20. doi: 10.3390/jof7010020.

本文引用的文献

1
Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals.
Fungal Biol Biotechnol. 2014 Nov 1;1:2. doi: 10.1186/s40694-014-0002-y. eCollection 2014.
2
Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production.
Metab Eng. 2016 Nov;38:427-435. doi: 10.1016/j.ymben.2016.10.006. Epub 2016 Oct 14.
3
Draft Genome Sequence of Ustilago trichophora RK089, a Promising Malic Acid Producer.
Genome Announc. 2016 Jul 28;4(4):e00749-16. doi: 10.1128/genomeA.00749-16.
4
Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations.
Biotechnol Biofuels. 2016 Jul 2;9:135. doi: 10.1186/s13068-016-0553-7. eCollection 2016.
5
Efficient malic acid production from glycerol with Ustilago trichophora TZ1.
Biotechnol Biofuels. 2016 Mar 17;9:67. doi: 10.1186/s13068-016-0483-4. eCollection 2016.
6
Genome editing in Ustilago maydis using the CRISPR-Cas system.
Fungal Genet Biol. 2016 Apr;89:3-9. doi: 10.1016/j.fgb.2015.09.001. Epub 2015 Sep 11.
7
Biorefineries for the production of top building block chemicals and their derivatives.
Metab Eng. 2015 Mar;28:223-239. doi: 10.1016/j.ymben.2014.12.007. Epub 2015 Jan 7.
8
Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.
Appl Biochem Biotechnol. 2015 Mar;175(5):2347-56. doi: 10.1007/s12010-014-1430-0. Epub 2014 Dec 7.
9
Fumaric acid production by Torulopsis glabrata: engineering the urea cycle and the purine nucleotide cycle.
Biotechnol Bioeng. 2015 Jan;112(1):156-67. doi: 10.1002/bit.25334. Epub 2014 Oct 10.
10
Improved expression of single-chain antibodies in Ustilago maydis.
J Biotechnol. 2014 Dec 10;191:165-75. doi: 10.1016/j.jbiotec.2014.06.028. Epub 2014 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验