KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium.
VIB, Center for Microbiology, Kasteelpark Arenberg 31, B-3000 Leuven, Belgium.
Nature. 2017 Nov 23;551(7681):507-511. doi: 10.1038/nature24460. Epub 2017 Nov 15.
Current sequencing-based analyses of faecal microbiota quantify microbial taxa and metabolic pathways as fractions of the sample sequence library generated by each analysis. Although these relative approaches permit detection of disease-associated microbiome variation, they are limited in their ability to reveal the interplay between microbiota and host health. Comparative analyses of relative microbiome data cannot provide information about the extent or directionality of changes in taxa abundance or metabolic potential. If microbial load varies substantially between samples, relative profiling will hamper attempts to link microbiome features to quantitative data such as physiological parameters or metabolite concentrations. Saliently, relative approaches ignore the possibility that altered overall microbiota abundance itself could be a key identifier of a disease-associated ecosystem configuration. To enable genuine characterization of host-microbiota interactions, microbiome research must exchange ratios for counts. Here we build a workflow for the quantitative microbiome profiling of faecal material, through parallelization of amplicon sequencing and flow cytometric enumeration of microbial cells. We observe up to tenfold differences in the microbial loads of healthy individuals and relate this variation to enterotype differentiation. We show how microbial abundances underpin both microbiota variation between individuals and covariation with host phenotype. Quantitative profiling bypasses compositionality effects in the reconstruction of gut microbiota interaction networks and reveals that the taxonomic trade-off between Bacteroides and Prevotella is an artefact of relative microbiome analyses. Finally, we identify microbial load as a key driver of observed microbiota alterations in a cohort of patients with Crohn's disease, here associated with a low-cell-count Bacteroides enterotype (as defined through relative profiling).
目前基于测序的粪便微生物组分析方法通过对每个分析生成的样本序列文库进行量化,来衡量微生物类群和代谢途径。尽管这些相对方法可以检测到与疾病相关的微生物组变化,但它们在揭示微生物组与宿主健康之间的相互作用方面能力有限。对相对微生物组数据的比较分析不能提供关于类群丰度或代谢潜力变化的程度或方向性的信息。如果微生物负荷在样本之间有很大差异,相对分析将阻碍将微生物组特征与生理参数或代谢物浓度等定量数据联系起来的尝试。突出的是,相对方法忽略了改变总体微生物组丰度本身可能是与疾病相关的生态系统配置的关键识别符的可能性。为了真正描述宿主-微生物组相互作用,微生物组研究必须用计数代替比例。在这里,我们通过扩增子测序和微生物细胞流式细胞术计数的并行化,建立了粪便样本定量微生物组分析的工作流程。我们观察到健康个体的微生物负荷存在多达十倍的差异,并将这种差异与肠型分化联系起来。我们展示了微生物丰度如何支撑个体之间的微生物组变化以及与宿主表型的共变。定量分析可以避免在重建肠道微生物组相互作用网络时的组成效应,并揭示了拟杆菌属和普雷沃氏菌属之间的分类权衡是相对微生物组分析的一个假象。最后,我们确定了微生物负荷是克罗恩病患者队列中观察到的微生物组改变的关键驱动因素,在这里与相对分析定义的低细胞计数拟杆菌属肠型相关。
Br J Dermatol. 2019-12
Microbiome. 2017-11-25
Appl Environ Microbiol. 2019-2-20
Appl Environ Microbiol. 2016-10-27
Nat Commun. 2025-9-1
NAR Genom Bioinform. 2025-8-19
Nat Commun. 2025-8-14
Microbiol Spectr. 2025-9-2
Gut. 2017-5
mSystems. 2017-1-17
BMC Bioinformatics. 2016-10-8
ISME J. 2017-2
Nat Microbiol. 2016-6-13
Nat Microbiol. 2016-6-27
Arthritis Rheumatol. 2016-12-1