Suppr超能文献

社交媒体上收到的与健康相关的在线信息所反映的求健康影响:横断面调查

Health-Seeking Influence Reflected by Online Health-Related Messages Received on Social Media: Cross-Sectional Survey.

作者信息

Iftikhar Rahila, Abaalkhail Bahaa

机构信息

Department of Family and Community Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

J Med Internet Res. 2017 Nov 16;19(11):e382. doi: 10.2196/jmir.5989.

Abstract

BACKGROUND

Major social networking platforms, such as Facebook, WhatsApp, and Twitter, have become popular means through which people share health-related information, irrespective of whether messages disseminated through these channels are authentic.

OBJECTIVE

This study aims to describe the demographic characteristics of patients that may demonstrate their attitudes toward medical information shared on social media networks. Second, we address how information found through social media affects the way people deal with their health. Third, we examine whether patients initiate or alter/discontinue their medications based on information derived from social media.

METHODS

We conducted a cross-sectional survey between April and June 2015 on patients attending outpatient clinics at King Abdulaziz University, Jeddah, Saudi Arabia. Patients who used social media (Facebook, WhatsApp, and Twitter) were included. We designed a questionnaire with closed-ended and multiple-choice questions to assess the type of social media platforms patients used and whether information received on these platforms influenced their health care decisions. We used chi-square test to establish the relationship between categorical variables.

RESULTS

Of the 442 patients who filled in the questionnaires, 401 used Facebook, WhatsApp, or Twitter. The majority of respondents (89.8%, 397/442) used WhatsApp, followed by Facebook (58.6%, 259/442) and Twitter (42.3%, 187/442). In most cases, respondents received health-related messages from WhatsApp and approximately 42.6% (171/401) reported ever stopping treatment as advised on a social media platform. A significantly higher proportion of patients without heart disease (P=.001) and obese persons (P=.01) checked the authenticity of information received on social media. Social media messages influenced decision making among patients without heart disease (P=.04). Respondents without heart disease (P=.001) and obese persons (P=.01) were more likely to discuss health-related information received on social media channels with a health care professional. A significant proportion of WhatsApp users reported that health-related information received on this platform influenced decisions regarding their family's health care (P=.001). Respondents' decisions regarding family health care were more likely to be influenced when they used two or all three types of platforms (P=.003).

CONCLUSIONS

Health education in the digital era needs to be accurate, evidence-based, and regulated. As technologies continue to evolve, we must be equipped to face the challenges it brings with it.

摘要

背景

主要的社交网络平台,如脸书、瓦次普和推特,已成为人们分享健康相关信息的流行方式,无论通过这些渠道传播的信息是否真实。

目的

本研究旨在描述可能表明患者对社交媒体网络上共享的医疗信息态度的人口统计学特征。其次,我们探讨通过社交媒体找到的信息如何影响人们处理自身健康的方式。第三,我们研究患者是否会根据从社交媒体获得的信息开始、改变或停止用药。

方法

2015年4月至6月,我们对沙特阿拉伯吉达阿卜杜勒阿齐兹国王大学门诊的患者进行了一项横断面调查。纳入使用社交媒体(脸书、瓦次普和推特)的患者。我们设计了一份包含封闭式和多项选择题目的问卷,以评估患者使用的社交媒体平台类型,以及这些平台上收到的信息是否影响了他们的医疗保健决策。我们使用卡方检验来确定分类变量之间的关系。

结果

在填写问卷的442名患者中,401人使用脸书、瓦次普或推特。大多数受访者(89.8%,397/442)使用瓦次普,其次是脸书(58.6%,259/442)和推特(42.3%,187/442)。在大多数情况下,受访者从瓦次普收到健康相关信息,约42.6%(171/401)的受访者报告曾按照社交媒体平台上的建议停止治疗。没有心脏病的患者(P = 0.001)和肥胖者(P = 0.01)中,检查社交媒体上收到信息真实性的比例显著更高。社交媒体信息影响了没有心脏病的患者的决策(P = 0.04)。没有心脏病的受访者(P = 0.001)和肥胖者(P = 0.01)更有可能与医疗保健专业人员讨论在社交媒体渠道上收到的健康相关信息。相当一部分瓦次普用户报告说,在这个平台上收到的健康相关信息影响了他们对家庭医疗保健的决策(P = 0.001)。当受访者使用两种或所有三种平台类型时,他们对家庭医疗保健的决策更有可能受到影响(P = 0.003)。

结论

数字时代的健康教育需要准确、基于证据且受到规范。随着技术不断发展,我们必须做好准备应对其带来的挑战。

相似文献

8
Knowledge About COVID-19 in Brazil: Cross-Sectional Web-Based Study.
JMIR Public Health Surveill. 2021 Jan 21;7(1):e24756. doi: 10.2196/24756.
9
The impact of social media-based support groups on smoking relapse prevention in Saudi Arabia.
Comput Methods Programs Biomed. 2018 Jun;159:135-143. doi: 10.1016/j.cmpb.2018.03.005. Epub 2018 Mar 9.

引用本文的文献

2
Generative artificial intelligence and machine learning methods to screen social media content.
PeerJ Comput Sci. 2025 Mar 14;11:e2710. doi: 10.7717/peerj-cs.2710. eCollection 2025.
5
A study to assess the efficacy of print and digital health communication media tools (HCMT) in rural and urban communities.
F1000Res. 2023 Oct 11;12:1314. doi: 10.12688/f1000research.139997.1. eCollection 2023.
7
Unauthentic Information About Celiac Disease on Social Networking Pages: Is It a Matter of Concern in Celiac Disease Management?
Dig Dis Sci. 2024 Oct;69(10):3650-3660. doi: 10.1007/s10620-024-08486-7. Epub 2024 May 30.
8
Inflammatory bowel disease evolution in the past two decades: a chronological multinational study.
EClinicalMedicine. 2024 Mar 15;70:102542. doi: 10.1016/j.eclinm.2024.102542. eCollection 2024 Apr.
9
Empowering Healthcare through Precision Medicine: Unveiling the Nexus of Social Factors and Trust.
Healthcare (Basel). 2023 Dec 15;11(24):3177. doi: 10.3390/healthcare11243177.

本文引用的文献

3
Identifying Twitter influencer profiles for health promotion in Saudi Arabia.
Health Promot Int. 2017 Jun 1;32(3):456-463. doi: 10.1093/heapro/dav103.
4
Partnering with patients using social media to develop a hypertension management instrument.
J Am Soc Hypertens. 2015 Sep;9(9):725-34. doi: 10.1016/j.jash.2015.07.006. Epub 2015 Jul 26.
5
Popular Glucose Tracking Apps and Use of mHealth by Latinos With Diabetes: Review.
JMIR Mhealth Uhealth. 2015 Aug 25;3(3):e84. doi: 10.2196/mhealth.3986.
6
Ethical Issues of Social Media Usage in Healthcare.
Yearb Med Inform. 2015 Aug 13;10(1):137-47. doi: 10.15265/IY-2015-001.
10
"I just forget to take it": asthma self-management needs and preferences in adolescents.
J Asthma. 2015 Oct;52(8):831-7. doi: 10.3109/02770903.2015.1020388. Epub 2015 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验