Suppr超能文献

鉴定G蛋白偶联受体招募抑制蛋白的磷酸化编码

Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.

作者信息

Zhou X Edward, He Yuanzheng, de Waal Parker W, Gao Xiang, Kang Yanyong, Van Eps Ned, Yin Yanting, Pal Kuntal, Goswami Devrishi, White Thomas A, Barty Anton, Latorraca Naomi R, Chapman Henry N, Hubbell Wayne L, Dror Ron O, Stevens Raymond C, Cherezov Vadim, Gurevich Vsevolod V, Griffin Patrick R, Ernst Oliver P, Melcher Karsten, Xu H Eric

机构信息

VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA.

Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, MI 49503, USA.

出版信息

Cell. 2017 Jul 27;170(3):457-469.e13. doi: 10.1016/j.cell.2017.07.002.

Abstract

G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular β sheet with the N-terminal β strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to β-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs.

摘要

G蛋白偶联受体(GPCRs)部分通过与抑制蛋白相互作用介导多种信号传导,抑制蛋白的结合促进受体内化并通过G蛋白非依赖途径进行信号传导。高亲和力的抑制蛋白结合需要受体磷酸化,通常发生在受体的C末端尾巴。在此,我们报道了视紫红质-抑制蛋白复合物的X射线自由电子激光(XFEL)晶体结构,其中视紫红质的磷酸化C末端与抑制蛋白的N末端β链形成一个延伸的分子间β折叠。在视紫红质C末端尾巴残基T336和S338处检测到磷酸化。这两个磷酸化残基与E341一起,与抑制蛋白中的三个带正电荷的口袋形成广泛的静电相互作用网络,其模式类似于磷酸化的血管加压素2型受体尾巴与β抑制蛋白-1的结合。基于这些观察结果,我们推导并验证了一组磷酸化编码,它们作为GPCRs磷酸化依赖性募集抑制蛋白的共同机制。

相似文献

1
Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.
Cell. 2017 Jul 27;170(3):457-469.e13. doi: 10.1016/j.cell.2017.07.002.
2
A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors.
J Biol Chem. 2006 Feb 3;281(5):2932-8. doi: 10.1074/jbc.M508074200. Epub 2005 Nov 30.
3
A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin.
J Mol Biol. 2018 Oct 19;430(21):4102-4118. doi: 10.1016/j.jmb.2018.08.009. Epub 2018 Aug 16.
4
Identification of receptor binding-induced conformational changes in non-visual arrestins.
J Biol Chem. 2014 Jul 25;289(30):20991-1002. doi: 10.1074/jbc.M114.560680. Epub 2014 May 27.
5
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.
6
Arrestin interaction with rhodopsin: conceptual models.
Cell Biochem Biophys. 2006;46(1):1-15. doi: 10.1385/CBB:46:1:1.
8
Conformational changes in the phosphorylated C-terminal domain of rhodopsin during rhodopsin arrestin interactions.
J Biol Chem. 2004 Dec 3;279(49):51203-7. doi: 10.1074/jbc.M407341200. Epub 2004 Sep 6.
9
A structural snapshot of the rhodopsin-arrestin complex.
FEBS J. 2016 Mar;283(5):816-21. doi: 10.1111/febs.13561. Epub 2015 Nov 7.
10
Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5160-8. doi: 10.1073/pnas.1508836112. Epub 2015 Aug 31.

引用本文的文献

1
Distinct Phosphorylation Patterns of AT1R by Biased Ligands and GRK Subtypes.
Int J Mol Sci. 2025 Aug 19;26(16):7988. doi: 10.3390/ijms26167988.
3
Arrestins as Possible Drug Targets.
Biomol Ther (Seoul). 2025 Sep 1;33(5):758-769. doi: 10.4062/biomolther.2025.079. Epub 2025 Aug 6.
4
Conformational dynamics of the active state of β-arrestin 1.
bioRxiv. 2025 Jun 14:2025.06.10.658911. doi: 10.1101/2025.06.10.658911.
6
A small molecule enhances arrestin-3 binding to the β-adrenergic receptor.
Commun Chem. 2025 Jul 1;8(1):194. doi: 10.1038/s42004-025-01581-4.
7
Differential Role of Phosphorylation in Glucagon Family Receptor Signaling Revealed by Mass Spectrometry.
J Proteome Res. 2025 Jul 4;24(7):3367-3378. doi: 10.1021/acs.jproteome.5c00079. Epub 2025 Jun 12.
8
Membrane phosphoinositides allosterically tune β-arrestin dynamics to facilitate GPCR core engagement.
bioRxiv. 2025 Jun 8:2025.06.06.658200. doi: 10.1101/2025.06.06.658200.
9
GPCR kinases phosphorylate GPCR C-terminal peptides in a hierarchical manner.
Commun Biol. 2025 Jun 9;8(1):899. doi: 10.1038/s42003-025-08301-7.
10
Lipids modulate the dynamics of GPCR:β-arrestin interaction.
Nat Commun. 2025 May 29;16(1):4982. doi: 10.1038/s41467-025-59842-8.

本文引用的文献

1
Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.
Mol Pharmacol. 2017 Sep;92(3):201-210. doi: 10.1124/mol.116.107839. Epub 2017 Feb 28.
2
C-edge loops of arrestin function as a membrane anchor.
Nat Commun. 2017 Feb 21;8:14258. doi: 10.1038/ncomms14258.
3
GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling.
Cell. 2016 Aug 11;166(4):907-919. doi: 10.1016/j.cell.2016.07.004. Epub 2016 Aug 4.
4
X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.
Sci Data. 2016 Apr 12;3:160021. doi: 10.1038/sdata.2016.21.
5
Recent developments in .
J Appl Crystallogr. 2016 Mar 29;49(Pt 2):680-689. doi: 10.1107/S1600576716004751. eCollection 2016 Apr 1.
6
The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.
J Biol Chem. 2016 Apr 22;291(17):8969-77. doi: 10.1074/jbc.R115.713313. Epub 2016 Mar 16.
7
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 Jun 25.
8
MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.
Biophys J. 2015 Oct 20;109(8):1528-32. doi: 10.1016/j.bpj.2015.08.015.
10
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验