Suppr超能文献

一种用于中枢神经系统活性化合物表征的微流控平台。

A Microfluidic Platform for the Characterisation of CNS Active Compounds.

机构信息

Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK.

出版信息

Sci Rep. 2017 Nov 16;7(1):15692. doi: 10.1038/s41598-017-15950-0.

Abstract

New in vitro technologies that assess neuronal excitability and the derived synaptic activity within a controlled microenvironment would be beneficial for the characterisation of compounds proposed to affect central nervous system (CNS) function. Here, a microfluidic system with computer controlled compound perfusion is presented that offers a novel methodology for the pharmacological profiling of CNS acting compounds based on calcium imaging readouts. Using this system, multiple applications of the excitatory amino acid glutamate (10 nM-1 mM) elicited reproducible and reversible transient increases in intracellular calcium, allowing the generation of a concentration response curve. In addition, the system allows pharmacological investigations to be performed as evidenced by application of glutamatergic receptor antagonists, reversibly inhibiting glutamate-induced increases in intracellular calcium. Importantly, repeated glutamate applications elicited significant increases in the synaptically driven activation of the adjacent, environmentally isolated neuronal network. Therefore, the proposed new methodology will enable neuropharmacological analysis of CNS active compounds whilst simultaneously determining their effect on synaptic connectivity.

摘要

新的体外技术可在受控微环境中评估神经元兴奋性和衍生的突触活性,这将有助于对拟影响中枢神经系统 (CNS) 功能的化合物进行特征描述。本文介绍了一种具有计算机控制化合物灌注的微流控系统,该系统为基于钙成像读数的 CNS 作用化合物的药理学分析提供了一种新方法。使用该系统,兴奋性氨基酸谷氨酸(10 nM-1 mM)的多次应用可引发细胞内钙的可重复和可逆的短暂增加,从而生成浓度反应曲线。此外,该系统可进行药理学研究,如应用谷氨酸能受体拮抗剂可可逆地抑制谷氨酸诱导的细胞内钙增加。重要的是,重复的谷氨酸应用会导致相邻环境隔离的神经元网络的突触驱动激活显著增加。因此,拟议的新方法将能够对 CNS 活性化合物进行神经药理学分析,同时确定它们对突触连接的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a13/5691080/4fe188d389b2/41598_2017_15950_Fig1_HTML.jpg

相似文献

1
A Microfluidic Platform for the Characterisation of CNS Active Compounds.
Sci Rep. 2017 Nov 16;7(1):15692. doi: 10.1038/s41598-017-15950-0.
2
Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.
Brain Res. 2009 Jan 28;1251:87-102. doi: 10.1016/j.brainres.2008.11.044. Epub 2008 Nov 25.
4
Regulation of Kv4.2 channels by glutamate in cultured hippocampal neurons.
J Neurochem. 2008 Jul;106(1):182-92. doi: 10.1111/j.1471-4159.2008.05356.x. Epub 2008 Jul 1.
7
Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses.
Biol Psychiatry. 2011 Apr 1;69(7):625-32. doi: 10.1016/j.biopsych.2010.09.025. Epub 2010 Nov 5.
9
Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity.
Eur J Neurosci. 2011 Apr;33(8):1483-92. doi: 10.1111/j.1460-9568.2011.07631.x. Epub 2011 Mar 14.

引用本文的文献

1
Strategies to overcome the limitations of current organoid technology - engineered organoids.
J Tissue Eng. 2025 Apr 15;16:20417314251319475. doi: 10.1177/20417314251319475. eCollection 2025 Jan-Dec.
3
Modeling Neurodegenerative Diseases Using Compartmentalized Microfluidic Devices.
Front Bioeng Biotechnol. 2022 Jun 24;10:919646. doi: 10.3389/fbioe.2022.919646. eCollection 2022.
4
Novel, Emerging Chip Models of the Blood-Brain Barrier and Future Directions.
Methods Mol Biol. 2022;2492:193-224. doi: 10.1007/978-1-0716-2289-6_11.
7
Detection of Estrogen Receptor Alpha and Assessment of Fulvestrant Activity in MCF-7 Tumor Spheroids Using Microfluidics and SERS.
Anal Chem. 2021 Apr 13;93(14):5862-5871. doi: 10.1021/acs.analchem.1c00188. Epub 2021 Apr 2.
8
Recent progress in translational engineered in vitro models of the central nervous system.
Brain. 2020 Dec 5;143(11):3181-3213. doi: 10.1093/brain/awaa268.
9
Quantitative propagation of assembled human Tau from Alzheimer's disease brain in microfluidic neuronal cultures.
J Biol Chem. 2020 Sep 11;295(37):13079-13093. doi: 10.1074/jbc.RA120.013325. Epub 2020 Jul 22.
10
Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders.
Mol Neurobiol. 2019 Dec;56(12):8489-8512. doi: 10.1007/s12035-019-01653-2. Epub 2019 Jul 1.

本文引用的文献

2
Neuronal networks provide rapid neuroprotection against spreading toxicity.
Sci Rep. 2016 Sep 21;6:33746. doi: 10.1038/srep33746.
5
Microfluidic organ-on-chip technology for blood-brain barrier research.
Tissue Barriers. 2016 Jan 28;4(1):e1142493. doi: 10.1080/21688370.2016.1142493. eCollection 2016 Jan-Mar.
6
A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro.
Front Neurosci. 2016 Mar 31;10:135. doi: 10.3389/fnins.2016.00135. eCollection 2016.
9
An analysis of the attrition of drug candidates from four major pharmaceutical companies.
Nat Rev Drug Discov. 2015 Jul;14(7):475-86. doi: 10.1038/nrd4609. Epub 2015 Jun 19.
10
Passive microfluidic chamber for long-term imaging of axon guidance in response to soluble gradients.
Lab Chip. 2015 Jul 7;15(13):2781-9. doi: 10.1039/c5lc00503e. Epub 2015 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验