Department of Psychology, Hunter College, City University of New York, New York, NY, USA.
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.
J Physiol. 2018 Feb 15;596(4):667-689. doi: 10.1113/JP274861. Epub 2017 Dec 18.
The present study examines dendritic integrative processes that occur in many central neurons but have been challenging to study in vivo in the vertebrate brain. The Mauthner cell of goldfish receives auditory and visual information via two separate dendrites, providing a privileged scenario for in vivo examination of dendritic integration. The results show differential attenuation properties in the Mauthner cell dendrites arising at least partly from differences in cable properties and the nonlinear behaviour of the respective dendritic membranes. In addition to distinct modality-dependent membrane specialization in neighbouring dendrites of the Mauthner cell, we report cross-modal dendritic interactions via backpropagating postsynaptic potentials. Broadly, the results of the present study provide an exceptional example for the processing power of single neurons.
Animals process multimodal information for adaptive behavioural decisions. In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that, we studied the Mauthner cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We investigated whether electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. The results obtained show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked postsynaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction because auditory evoked PSPs invade the ventral dendrite (VD), as well as the opposite where visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical, with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. The results obtained in the present study suggest modality-dependent membrane specialization in M-cell dendrites suited for processing stimuli of different time domains and, more broadly, provide a compelling example of information processing in single neurons.
本研究考察了许多中枢神经元中发生的树突整合过程,但在脊椎动物大脑中进行体内研究具有挑战性。金鱼的 Mauthner 细胞通过两个单独的树突接收听觉和视觉信息,为体内检查树突整合提供了有利的场景。结果表明,Mauthner 细胞树突中的差异衰减特性至少部分源于电缆特性和各自树突膜的非线性行为的差异。除了 Mauthner 细胞相邻树突中明显的模态依赖的膜特化外,我们还报告了通过逆行突触后电位的跨模态树突相互作用。总的来说,本研究的结果为单个神经元的处理能力提供了一个极好的例子。
动物为适应行为决策处理多模态信息。在鱼类中,逃避打破水面的潜水鸟依赖于整合具有非常不同特征的视觉和听觉刺激。神经元如何在树突水平上处理这种差异的感觉输入?为此,我们研究了金鱼惊跳回路中的 Mauthner 细胞(M-cells),它们通过两个单独的树突接收视觉和听觉输入,这两个树突都可用于体内记录。我们研究了电生理膜特性和体内研究的树突形态是否在 M 细胞的选择性感觉处理中起作用。获得的结果表明,树突之间的解剖和电生理差异结合起来,导致视觉诱发的突触后电位(PSPs)比听觉诱发的 PSPs 衰减更强。有趣的是,我们的记录还显示了跨模态的树突相互作用,因为听觉诱发的 PSP 会侵入腹侧树突(VD),反之亦然,视觉 PSP 会侵入外侧树突(LD)。然而,这些相互作用是不对称的,在 VD 中听觉 PSP 比在 LD 中视觉 PSP 更突出。模拟实验表明,这种不对称性是由 VD 近端段表达的主动电导引起的。本研究获得的结果表明,M 细胞树突中的模态依赖的膜特化适合处理不同时间域的刺激,更广泛地说,为单个神经元的信息处理提供了一个令人信服的例子。