Suppr超能文献

通过整合纳米粒子库和定量纳米结构活性关系模型来预测纳米生物相互作用。

Predicting Nano-Bio Interactions by Integrating Nanoparticle Libraries and Quantitative Nanostructure Activity Relationship Modeling.

机构信息

The Rutgers Center for Computational and Integrative Biology , Camden, New Jersey 08102, United States.

Sciome , Research Triangle Park, North Carolina 27709, United States.

出版信息

ACS Nano. 2017 Dec 26;11(12):12641-12649. doi: 10.1021/acsnano.7b07093. Epub 2017 Nov 22.

Abstract

The discovery of biocompatible or bioactive nanoparticles for medicinal applications is an expensive and time-consuming process that may be significantly facilitated by incorporating more rational approaches combining both experimental and computational methods. However, it is currently hindered by two limitations: (1) the lack of high-quality comprehensive data for computational modeling and (2) the lack of an effective modeling method for the complex nanomaterial structures. In this study, we tackled both issues by first synthesizing a large library of nanoparticles and obtained comprehensive data on their characterizations and bioactivities. Meanwhile, we virtually simulated each individual nanoparticle in this library by calculating their nanostructural characteristics and built models that correlate their nanostructure diversity to the corresponding biological activities. The resulting models were then used to predict and design nanoparticles with desired bioactivities. The experimental testing results of the designed nanoparticles were consistent with the model predictions. These findings demonstrate that rational design approaches combining high-quality nanoparticle libraries, big experimental data sets, and intelligent computational models can significantly reduce the efforts and costs of nanomaterial discovery.

摘要

用于医学应用的生物相容性或生物活性纳米粒子的发现是一个昂贵且耗时的过程,通过结合更多将实验和计算方法相结合的合理方法,可以显著促进这一过程。然而,目前它受到两个限制的阻碍:(1)缺乏用于计算建模的高质量综合数据,(2)缺乏用于复杂纳米材料结构的有效建模方法。在这项研究中,我们通过首先合成大量的纳米粒子库并获得关于它们的特性和生物活性的综合数据来解决这两个问题。同时,我们通过计算它们的纳米结构特征来虚拟模拟库中的每个纳米粒子,并建立将它们的纳米结构多样性与相应生物活性相关联的模型。然后,将得到的模型用于预测和设计具有所需生物活性的纳米粒子。设计的纳米粒子的实验测试结果与模型预测一致。这些发现表明,将高质量的纳米粒子库、大数据集和智能计算模型相结合的合理设计方法可以显著减少纳米材料发现的努力和成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b583/5772766/9f292287671f/nihms926543f1.jpg

相似文献

引用本文的文献

5
Development potential of nanoenabled agriculture projected using machine learning.利用机器学习预测纳米农业的发展潜力。
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2301885120. doi: 10.1073/pnas.2301885120. Epub 2023 Jun 14.

本文引用的文献

6
Experimental modulation and computational model of nano-hydrophobicity.纳米疏水性的实验调控与计算模型
Biomaterials. 2015 Jun;52:312-7. doi: 10.1016/j.biomaterials.2015.02.043. Epub 2015 Feb 28.
8
Nanosafety research--are we on the right track?纳米安全性研究——我们是否走在正确的轨道上?
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12304-19. doi: 10.1002/anie.201403367. Epub 2014 Oct 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验