Suppr超能文献

相似文献

1
Predicting Nano-Bio Interactions by Integrating Nanoparticle Libraries and Quantitative Nanostructure Activity Relationship Modeling.
ACS Nano. 2017 Dec 26;11(12):12641-12649. doi: 10.1021/acsnano.7b07093. Epub 2017 Nov 22.
5
The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
Acc Chem Res. 2013 Mar 19;46(3):650-61. doi: 10.1021/ar300015b. Epub 2012 Jun 25.
6
Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays.
ACS Nano. 2011 Jun 28;5(6):4688-97. doi: 10.1021/nn200546k. Epub 2011 Jun 6.
10
Universal nanohydrophobicity predictions using virtual nanoparticle library.
J Cheminform. 2019 Jan 18;11(1):6. doi: 10.1186/s13321-019-0329-8.

引用本文的文献

1
Advances in medical devices using nanomaterials and nanotechnology: Innovation and regulatory science.
Bioact Mater. 2025 Feb 20;48:353-369. doi: 10.1016/j.bioactmat.2025.02.017. eCollection 2025 Jun.
3
Ligand Lipophilicity Determines Molecular Mechanisms of Nanoparticle Adsorption to Lipid Bilayers.
ACS Nano. 2024 Feb 27;18(8):6424-6437. doi: 10.1021/acsnano.3c11854. Epub 2024 Feb 14.
4
Computational Nanotoxicology Models for Environmental Risk Assessment of Engineered Nanomaterials.
Nanomaterials (Basel). 2024 Jan 10;14(2):155. doi: 10.3390/nano14020155.
5
Development potential of nanoenabled agriculture projected using machine learning.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2301885120. doi: 10.1073/pnas.2301885120. Epub 2023 Jun 14.
6
Application of Computing as a High-Practicability and -Efficiency Auxiliary Tool in Nanodrugs Discovery.
Pharmaceutics. 2023 Mar 25;15(4):1064. doi: 10.3390/pharmaceutics15041064.
7
Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?
Nano Today. 2022 Dec;47. doi: 10.1016/j.nantod.2022.101665. Epub 2022 Nov 7.
8
Integrating structure annotation and machine learning approaches to develop graphene toxicity models.
Carbon N Y. 2023 Feb;204:484-494. doi: 10.1016/j.carbon.2022.12.065. Epub 2022 Dec 26.
9
prediction of siRNA ionizable-lipid nanoparticles efficacy: Machine learning modeling based on formulation and molecular descriptors.
Front Mol Biosci. 2022 Dec 21;9:1042720. doi: 10.3389/fmolb.2022.1042720. eCollection 2022.
10
Nanoinformatics and Personalized Medicine: An Advanced Cumulative Approach for Cancer Management.
Curr Med Chem. 2023;30(3):271-285. doi: 10.2174/0929867329666220610090405.

本文引用的文献

1
A further development of the QNAR model to predict the cellular uptake of nanoparticles by pancreatic cancer cells.
Food Chem Toxicol. 2018 Feb;112:571-580. doi: 10.1016/j.fct.2017.04.010. Epub 2017 Apr 12.
2
Quantification of nanoparticle pesticide adsorption: computational approaches based on experimental data.
Nanotoxicology. 2016 Oct;10(8):1118-28. doi: 10.1080/17435390.2016.1177745. Epub 2016 May 4.
3
Computer-aided design of carbon nanotubes with the desired bioactivity and safety profiles.
Nanotoxicology. 2016;10(3):374-83. doi: 10.3109/17435390.2015.1073397. Epub 2015 Nov 2.
5
Developing Enhanced Blood-Brain Barrier Permeability Models: Integrating External Bio-Assay Data in QSAR Modeling.
Pharm Res. 2015 Sep;32(9):3055-65. doi: 10.1007/s11095-015-1687-1. Epub 2015 Apr 11.
6
Experimental modulation and computational model of nano-hydrophobicity.
Biomaterials. 2015 Jun;52:312-7. doi: 10.1016/j.biomaterials.2015.02.043. Epub 2015 Feb 28.
8
Nanosafety research--are we on the right track?
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12304-19. doi: 10.1002/anie.201403367. Epub 2014 Oct 10.
9
Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies.
Nanotoxicology. 2015 May;9(3):313-25. doi: 10.3109/17435390.2014.930195. Epub 2014 Jul 1.
10
Tuning cell autophagy by diversifying carbon nanotube surface chemistry.
ACS Nano. 2014 Mar 25;8(3):2087-99. doi: 10.1021/nn500376w. Epub 2014 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验