Suppr超能文献

利用机器学习预测纳米农业的发展潜力。

Development potential of nanoenabled agriculture projected using machine learning.

机构信息

Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Tianjin Key Laboratory of Agro-Environment and Product Safety, Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.

出版信息

Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2301885120. doi: 10.1073/pnas.2301885120. Epub 2023 Jun 14.

Abstract

The controllability and targeting of nanoparticles (NPs) offer solutions for precise and sustainable agriculture. However, the development potential of nanoenabled agriculture remains unknown. Here, we build an NP-plant database containing 1,174 datasets and predict ( higher than 0.8 for 13 random forest models) the response and uptake/transport of various NPs by plants using a machine learning approach. Multiway feature importance analysis quantitatively shows that plant responses are driven by the total NP exposure dose and duration and plant age at exposure, as well as the NP size and zeta potential. Feature interaction and covariance analysis further improve the interpretability of the model and reveal hidden interaction factors (e.g., NP size and zeta potential). Integration of the model, laboratory, and field data suggests that FeO NP application may inhibit bean growth in Europe due to low night temperatures. In contrast, the risks of oxidative stress are low in Africa because of high night temperatures. According to the prediction, Africa is a suitable area for nanoenabled agriculture. The regional differences and temperature changes make nanoenabled agriculture complicated. In the future, the temperature increase may reduce the oxidative stress in African bean and European maize induced by NPs. This study projects the development potential of nanoenabled agriculture using machine learning, although many more field studies are needed to address the differences at the country and continental scales.

摘要

纳米颗粒 (NPs) 的可控性和靶向性为精准和可持续农业提供了解决方案。然而,纳米技术在农业中的发展潜力尚不清楚。在这里,我们构建了一个包含 1174 个数据集的 NP-植物数据库,并使用机器学习方法预测了各种 NPs 被植物吸收和转运的情况(13 个随机森林模型中的 13 个预测值高于 0.8)。多变量特征重要性分析定量表明,植物的反应由 NP 总暴露剂量和持续时间以及暴露时的植物年龄、NP 大小和zeta 电位驱动。特征相互作用和协方差分析进一步提高了模型的可解释性,并揭示了隐藏的相互作用因素(例如,NP 大小和 zeta 电位)。模型、实验室和田间数据的整合表明,由于夜间温度较低,FeO NP 的应用可能会抑制欧洲豆类的生长。相比之下,由于夜间温度较高,非洲发生氧化应激的风险较低。根据预测,非洲是适合开展纳米技术农业的地区。由于地区差异和温度变化,纳米技术农业变得复杂。未来,气温升高可能会降低 NPs 诱导的非洲豆类和欧洲玉米的氧化应激。本研究使用机器学习预测了纳米技术农业的发展潜力,但需要更多的田间研究来解决国家和大陆尺度上的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7651/10288598/a9de71d26fc8/pnas.2301885120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验