Chew Alex K, Pedersen Joel A, Van Lehn Reid C
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
ACS Nano. 2022 Apr 26;16(4):6282-6292. doi: 10.1021/acsnano.2c00301. Epub 2022 Mar 15.
Gold nanoparticles are versatile materials for biological applications because their properties can be modulated by assembling ligands on their surface to form monolayers. However, the physicochemical properties and behaviors of monolayer-protected nanoparticles in biological environments are difficult to anticipate because they emerge from the interplay of ligand-ligand and ligand-solvent interactions that cannot be readily inferred from ligand chemical structure alone. In this work, we demonstrate that quantitative nanostructure-activity relationship (QNAR) models can employ descriptors calculated from molecular dynamics simulations to predict nanoparticle properties and cellular uptake. We performed atomistic molecular dynamics simulations of 154 monolayer-protected gold nanoparticles and calculated a small library of simulation-derived descriptors that capture nanoparticle structural and chemical properties in aqueous solution. We then parametrized QNAR models using interpretable regression algorithms to predict experimental measurements of nanoparticle octanol-water partition coefficients, zeta potentials, and cellular uptake obtained from a curated database. These models reveal that simulation-derived descriptors can accurately predict experimental trends and provide physical insight into what descriptors are most important for obtaining desired nanoparticle properties or behaviors in biological environments. Finally, we demonstrate model generalizability by predicting cell uptake trends for 12 nanoparticles not included in the original data set. These results demonstrate that QNAR models parametrized with simulation-derived descriptors are accurate, generalizable computational tools that could be used to guide the design of monolayer-protected gold nanoparticles for biological applications without laborious trial-and-error experimentation.
金纳米颗粒是生物应用中的多功能材料,因为其性质可通过在其表面组装配体以形成单分子层来调节。然而,单分子层保护的纳米颗粒在生物环境中的物理化学性质和行为很难预测,因为它们源于配体-配体和配体-溶剂相互作用的相互影响,而这种相互影响不能仅从配体化学结构中轻易推断出来。在这项工作中,我们证明了定量纳米结构-活性关系(QNAR)模型可以使用从分子动力学模拟计算得到的描述符来预测纳米颗粒的性质和细胞摄取。我们对154个单分子层保护的金纳米颗粒进行了原子分子动力学模拟,并计算了一小套从模拟得出的描述符,这些描述符能够捕捉纳米颗粒在水溶液中的结构和化学性质。然后,我们使用可解释的回归算法对QNAR模型进行参数化,以预测从一个精心策划的数据库中获得的纳米颗粒辛醇-水分配系数、zeta电位和细胞摄取的实验测量值。这些模型表明,从模拟得出的描述符可以准确预测实验趋势,并为了解哪些描述符对于在生物环境中获得所需的纳米颗粒性质或行为最为重要提供物理见解。最后,我们通过预测原始数据集中未包含的12个纳米颗粒的细胞摄取趋势来证明模型的通用性。这些结果表明,用从模拟得出的描述符进行参数化的QNAR模型是准确、通用的计算工具,可用于指导单分子层保护的金纳米颗粒在生物应用中的设计,而无需进行费力的反复试验。