Suppr超能文献

人类线粒体中启动子识别、转录因子结合与释放的结构基础。

Structural basis for promoter recognition and transcription factor binding and release in human mitochondria.

作者信息

Herbine Karl, Nayak Ashok R, Zamudio-Ochoa Angelica, Temiakov Dmitry

机构信息

Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.

Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.

出版信息

Mol Cell. 2025 Jul 22. doi: 10.1016/j.molcel.2025.06.016.

Abstract

Transcription in human mitochondria is driven by a core apparatus consisting of a Pol A family RNA polymerase (mtRNAP), the initiation factors TFAM and TFB2M, and the elongation factor TEFM. While earlier structures of initiation and elongation complexes provided valuable snapshots, they represent isolated stages of a highly dynamic and multistep process. Critical aspects of mitochondrial transcription-such as DNA recognition and melting, promoter escape, and the release of initiation factors-remain poorly understood. Here, we present a series of cryoelectron microscopy (cryo-EM) structures that capture the transcription complex as it transitions from the initial open promoter complex to the processive elongation complex through intermediate stages. Our data reveal new, previously unidentified determinants of promoter specificity: the sequential disengagement of mtRNAP from TFAM and the promoter, the release of TFB2M, and the recruitment of TEFM. Together, these findings provide a detailed molecular mechanism underlying transcription in human mitochondria.

摘要

人类线粒体中的转录由一个核心装置驱动,该装置由Pol A家族RNA聚合酶(mtRNAP)、起始因子TFAM和TFB2M以及延伸因子TEFM组成。虽然早期起始和延伸复合物的结构提供了有价值的瞬间图像,但它们代表的是一个高度动态且多步骤过程中的孤立阶段。线粒体转录的关键方面,如DNA识别与解链、启动子逃逸以及起始因子的释放,仍然了解甚少。在这里,我们展示了一系列冷冻电子显微镜(cryo-EM)结构,这些结构捕捉到了转录复合物从初始开放启动子复合物通过中间阶段转变为进行性延伸复合物的过程。我们的数据揭示了启动子特异性新的、以前未被识别的决定因素:mtRNAP与TFAM和启动子的顺序解离、TFB2M的释放以及TEFM的招募。这些发现共同提供了人类线粒体中转录的详细分子机制。

相似文献

4
Structural Basis of Mitochondrial Transcription Initiation.
Cell. 2017 Nov 16;171(5):1072-1081.e10. doi: 10.1016/j.cell.2017.10.036.
5
Cryo-EM Structures Reveal Transcription Initiation Steps by Yeast Mitochondrial RNA Polymerase.
Mol Cell. 2021 Jan 21;81(2):268-280.e5. doi: 10.1016/j.molcel.2020.11.016. Epub 2020 Dec 4.
6
Organization of the human mitochondrial transcription initiation complex.
Nucleic Acids Res. 2014 Apr;42(6):4100-12. doi: 10.1093/nar/gkt1360. Epub 2014 Jan 9.
7
Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation.
Nucleic Acids Res. 2017 Jan 25;45(2):861-874. doi: 10.1093/nar/gkw1157. Epub 2016 Nov 29.
8
Mechanism of Transcription Anti-termination in Human Mitochondria.
Cell. 2017 Nov 16;171(5):1082-1093.e13. doi: 10.1016/j.cell.2017.09.035. Epub 2017 Oct 12.
9
Human Mitochondrial Transcription Initiation Complexes Have Similar Topology on the Light and Heavy Strand Promoters.
J Biol Chem. 2016 Jun 24;291(26):13432-5. doi: 10.1074/jbc.C116.727966. Epub 2016 May 13.
10
Phosphorylation of mitochondrial transcription factor B2 controls mitochondrial DNA binding and transcription.
Biochem Biophys Res Commun. 2020 Jul 30;528(3):580-585. doi: 10.1016/j.bbrc.2020.05.141. Epub 2020 Jun 3.

本文引用的文献

1
Structural basis for substrate binding and selection by human mitochondrial RNA polymerase.
Nat Commun. 2024 Aug 20;15(1):7134. doi: 10.1038/s41467-024-50817-9.
3
Structures illustrate step-by-step mitochondrial transcription initiation.
Nature. 2023 Oct;622(7984):872-879. doi: 10.1038/s41586-023-06643-y. Epub 2023 Oct 11.
4
Mechanisms and regulation of human mitochondrial transcription.
Nat Rev Mol Cell Biol. 2024 Feb;25(2):119-132. doi: 10.1038/s41580-023-00661-4. Epub 2023 Oct 2.
5
Nuclear genetic control of mtDNA copy number and heteroplasmy in humans.
Nature. 2023 Aug;620(7975):839-848. doi: 10.1038/s41586-023-06426-5. Epub 2023 Aug 16.
6
3DFlex: determining structure and motion of flexible proteins from cryo-EM.
Nat Methods. 2023 Jun;20(6):860-870. doi: 10.1038/s41592-023-01853-8. Epub 2023 May 11.
7
TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease.
Nat Commun. 2023 Feb 23;14(1):1009. doi: 10.1038/s41467-023-36277-7.
8
Mechanisms of mitochondrial promoter recognition in humans and other mammalian species.
Nucleic Acids Res. 2022 Mar 21;50(5):2765-2781. doi: 10.1093/nar/gkac103.
9
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing.
Commun Biol. 2021 Jul 15;4(1):874. doi: 10.1038/s42003-021-02399-1.
10
POLRMT mutations impair mitochondrial transcription causing neurological disease.
Nat Commun. 2021 Feb 18;12(1):1135. doi: 10.1038/s41467-021-21279-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验