Suppr超能文献

在波动环境中的持久性。

Persistence in fluctuating environments.

作者信息

Schreiber Sebastian J, Benaïm Michel, Atchadé Kolawolé A S

机构信息

Department of Evolution and Ecology and the Center for Population Biology, University of California, Davis, CA 95616, USA.

出版信息

J Math Biol. 2011 May;62(5):655-83. doi: 10.1007/s00285-010-0349-5. Epub 2010 Jun 8.

Abstract

Understanding under what conditions interacting populations, whether they be plants, animals, or viral particles, coexist is a question of theoretical and practical importance in population biology. Both biotic interactions and environmental fluctuations are key factors that can facilitate or disrupt coexistence. To better understand this interplay between these deterministic and stochastic forces, we develop a mathematical theory extending the nonlinear theory of permanence for deterministic systems to stochastic difference and differential equations. Our condition for coexistence requires that there is a fixed set of weights associated with the interacting populations and this weighted combination of populations' invasion rates is positive for any (ergodic) stationary distribution associated with a sub collection of populations. Here, an invasion rate corresponds to an average per-capita growth rate along a stationary distribution. When this condition holds and there is sufficient noise in the system, we show that the populations approach a unique positive stationary distribution. Moreover, we show that our coexistence criterion is robust to small perturbations of the model functions. Using this theory, we illustrate that (i) environmental noise enhances or inhibits coexistence in communities with rock-paper-scissor dynamics depending on correlations between interspecific demographic rates, (ii) stochastic variation in mortality rates has no effect on the coexistence criteria for discrete-time Lotka-Volterra communities, and (iii) random forcing can promote genetic diversity in the presence of exploitative interactions.

摘要

理解相互作用的种群(无论是植物、动物还是病毒颗粒)在何种条件下共存,是种群生物学中一个具有理论和实际重要性的问题。生物相互作用和环境波动都是能够促进或破坏共存的关键因素。为了更好地理解这些确定性和随机性力量之间的这种相互作用,我们发展了一种数学理论,将确定性系统的非线性持久性理论扩展到随机差分方程和微分方程。我们的共存条件要求存在一组与相互作用种群相关的固定权重,并且对于与种群子集合相关的任何(遍历)平稳分布,种群入侵率的这种加权组合是正的。这里,入侵率对应于沿着平稳分布的平均人均增长率。当这个条件成立且系统中存在足够的噪声时,我们表明种群会趋近于一个唯一的正平稳分布。此外,我们表明我们的共存标准对于模型函数的小扰动是稳健的。利用这个理论,我们阐明了:(i)环境噪声根据种间人口统计率之间的相关性增强或抑制具有剪刀石头布动态的群落中的共存;(ii)死亡率的随机变化对离散时间洛特卡 - 沃尔泰拉群落的共存标准没有影响;以及(iii)在存在剥削性相互作用的情况下,随机强迫可以促进遗传多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验