Suppr超能文献

一种高效的 Cas9 来源的基因激活工具,可用于植物和哺乳动物细胞。

A potent Cas9-derived gene activator for plant and mammalian cells.

机构信息

Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

出版信息

Nat Plants. 2017 Dec;3(12):930-936. doi: 10.1038/s41477-017-0046-0. Epub 2017 Nov 20.

Abstract

Overexpression of complementary DNA represents the most commonly used gain-of-function approach for interrogating gene functions and for manipulating biological traits. However, this approach is challenging and inefficient for multigene expression due to increased labour for cloning, limited vector capacity, requirement of multiple promoters and terminators, and variable transgene expression levels. Synthetic transcriptional activators provide a promising alternative strategy for gene activation by tethering an autonomous transcription activation domain (TAD) to an intended gene promoter at the endogenous genomic locus through a programmable DNA-binding module. Among the known custom DNA-binding modules, the nuclease-dead Streptococcus pyogenes Cas9 (dCas9) protein, which recognizes a specific DNA target through base pairing between a synthetic guide RNA and DNA, outperforms zinc-finger proteins and transcription activator-like effectors, both of which target through protein-DNA interactions . Recently, three potent dCas9-based transcriptional activation systems, namely VPR, SAM and SunTag, have been developed for animal cells . However, an efficient dCas9-based transcriptional activation platform is still lacking for plant cells . Here, we developed a new potent dCas9-TAD, named dCas9-TV, through plant cell-based screens. dCas9-TV confers far stronger transcriptional activation of single or multiple target genes than the routinely used dCas9-VP64 activator in both plant and mammalian cells.

摘要

互补 DNA 的过表达是研究基因功能和操纵生物特性最常用的功能获得方法。然而,由于克隆所需的工作量增加、载体容量有限、需要多个启动子和终止子以及转基因表达水平的变化,这种方法对于多基因表达具有挑战性且效率低下。合成转录激活因子通过将自主转录激活结构域 (TAD) 通过可编程 DNA 结合模块与内源基因组位点上的预期基因启动子连接,为基因激活提供了一种很有前途的替代策略。在已知的定制 DNA 结合模块中,经修饰的无核酸酶化脓性链球菌 Cas9 (dCas9) 蛋白通过合成向导 RNA 与 DNA 之间的碱基配对识别特定的 DNA 靶标,优于锌指蛋白和转录激活子样效应因子,这两种蛋白都是通过蛋白-DNA 相互作用靶向的。最近,已经为动物细胞开发了三种有效的基于 dCas9 的转录激活系统,即 VPR、SAM 和 SunTag。然而,对于植物细胞来说,仍然缺乏有效的基于 dCas9 的转录激活平台。在这里,我们通过植物细胞筛选开发了一种新的有效的 dCas9-TAD,命名为 dCas9-TV。dCas9-TV 在植物和哺乳动物细胞中比常规使用的 dCas9-VP64 激活剂更能强烈地激活单个或多个靶基因的转录。

相似文献

1
A potent Cas9-derived gene activator for plant and mammalian cells.
Nat Plants. 2017 Dec;3(12):930-936. doi: 10.1038/s41477-017-0046-0. Epub 2017 Nov 20.
4
Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
Insect Sci. 2019 Dec;26(6):983-990. doi: 10.1111/1744-7917.12634. Epub 2018 Sep 25.
5
Multiplex and optimization of dCas9-TV-mediated gene activation in plants.
J Integr Plant Biol. 2021 Apr;63(4):634-645. doi: 10.1111/jipb.13023. Epub 2021 Feb 11.
6
In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila.
Genetics. 2015 Oct;201(2):433-42. doi: 10.1534/genetics.115.181065. Epub 2015 Aug 5.
7
Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform.
Int J Mol Sci. 2020 Feb 25;21(5):1574. doi: 10.3390/ijms21051574.
8
RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
Plant Biotechnol J. 2015 May;13(4):578-89. doi: 10.1111/pbi.12284. Epub 2014 Nov 14.
9
Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems.
Methods Mol Biol. 2017;1629:167-184. doi: 10.1007/978-1-4939-7125-1_12.

引用本文的文献

1
Rational Modulation of Plant Root Development Using Engineered Cytokinin Regulators.
ACS Synth Biol. 2025 Aug 15;14(8):3013-3023. doi: 10.1021/acssynbio.5c00051. Epub 2025 Jul 30.
2
Miniature enOsCas12f1 Enables Targeted Genome Editing in Rice.
Plants (Basel). 2025 Jul 8;14(14):2100. doi: 10.3390/plants14142100.
5
Programmable genome engineering and gene modifications for plant biodesign.
Plant Commun. 2025 Aug 11;6(8):101427. doi: 10.1016/j.xplc.2025.101427. Epub 2025 Jun 24.
7
CRISPR-Cas12i confers efficient genome editing and gene regulation in plants.
Plant Physiol. 2025 Apr 30;198(1). doi: 10.1093/plphys/kiaf125.
8
A comprehensive all-in-one CRISPR toolbox for large-scale screens in plants.
Plant Cell. 2025 Apr 2;37(4). doi: 10.1093/plcell/koaf081.
9
Recent advances in designing synthetic plant regulatory modules.
Front Plant Sci. 2025 Apr 2;16:1567659. doi: 10.3389/fpls.2025.1567659. eCollection 2025.
10
Beyond a few bases: methods for large DNA insertion and gene targeting in plants.
Plant J. 2025 Mar;121(6):e70099. doi: 10.1111/tpj.70099.

本文引用的文献

1
Plant signalling in symbiosis and immunity.
Nature. 2017 Mar 15;543(7645):328-336. doi: 10.1038/nature22009.
2
A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants.
Nat Plants. 2017 Feb 17;3:17018. doi: 10.1038/nplants.2017.18.
3
Protein-stabilizing and cell-penetrating properties of α-helix domain of 30Kc19 protein.
Biotechnol J. 2016 Nov;11(11):1443-1451. doi: 10.1002/biot.201600040. Epub 2016 Aug 12.
4
Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications.
Curr Opin Biotechnol. 2016 Aug;40:177-184. doi: 10.1016/j.copbio.2016.06.003. Epub 2016 Jun 23.
5
Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3892-900. doi: 10.1073/pnas.1600582113. Epub 2016 Jun 20.
6
Comparison of Cas9 activators in multiple species.
Nat Methods. 2016 Jul;13(7):563-567. doi: 10.1038/nmeth.3871. Epub 2016 May 23.
7
A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard.
Plant Methods. 2016 Feb 1;12:10. doi: 10.1186/s13007-016-0101-2. eCollection 2016.
8
Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes.
Plant J. 2016 Jul;87(1):5-15. doi: 10.1111/tpj.13100. Epub 2016 Jan 11.
9
A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.
Plant Physiol. 2015 Oct;169(2):971-85. doi: 10.1104/pp.15.00636. Epub 2015 Aug 21.
10
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
Nature. 2015 Jan 29;517(7536):583-8. doi: 10.1038/nature14136. Epub 2014 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验