Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America.
Phys Med Biol. 2018 Jan 17;63(2):025036. doi: 10.1088/1361-6560/aa9c1f.
Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty ⩽1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used.
临床质子束质量保证(QA)需要一种简单而准确的方法来测量质子束布喇格峰(BP)深度。声发射,即测量由质子剂量沉积引起的热膨胀产生的压力波,可用于通过测量压力波的飞行时间来获得体模中 BP 的深度。使用不同材料(铝、铅和聚乙烯)的矩形和圆柱形体模进行声发射研究。比较了四种分析声发射信号的方法。数据分析表明,对于方法 1 和 2,由于声速较低,塑料体模比金属体模具有更好的准确性。方法 3 不需要对材料中的声速进行特性化,但会导致最大的误差。方法 4 显示出最小的误差,对于所有材料和几何形状,误差小于 3 mm(不确定性 ⩽1.5 mm)。使用伪谱波动方程模拟(k-Wave MATLAB 工具箱)来了解体模内声反射的起源。提出的模拟和实验表明,只要使用适当的体模和计算方法,声发射测量就可以为质子束射程验证提供一种低成本且简单的 QA 程序。