Suppr超能文献

动态糖基化调控脊椎动物COPII蛋白转运途径。

Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway.

作者信息

Cox Nathan J, Unlu Gokhan, Bisnett Brittany J, Meister Thomas R, Condon Brett M, Luo Peter M, Smith Timothy J, Hanna Michael, Chhetri Abhishek, Soderblom Erik J, Audhya Anjon, Knapik Ela W, Boyce Michael

机构信息

Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States.

Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, Wisconsin 53706, United States.

出版信息

Biochemistry. 2018 Jan 9;57(1):91-107. doi: 10.1021/acs.biochem.7b00870. Epub 2017 Dec 15.

Abstract

The COPII coat complex, which mediates secretory cargo trafficking from the endoplasmic reticulum, is a key control point for subcellular protein targeting. Because misdirected proteins cannot function, protein sorting by COPII is critical for establishing and maintaining normal cell and tissue homeostasis. Indeed, mutations in COPII genes cause a range of human pathologies, including cranio-lenticulo-sutural dysplasia (CLSD), which is characterized by collagen trafficking defects, craniofacial abnormalities, and skeletal dysmorphology. Detailed knowledge of the COPII pathway is required to understand its role in normal cell physiology and to devise new treatments for disorders in which it is disrupted. However, little is known about how vertebrates dynamically regulate COPII activity in response to developmental, metabolic, or pathological cues. Several COPII proteins are modified by O-linked β-N-acetylglucosamine (O-GlcNAc), a dynamic form of intracellular protein glycosylation, but the biochemical and functional effects of these modifications remain unclear. Here, we use a combination of chemical, biochemical, cellular, and genetic approaches to demonstrate that site-specific O-GlcNAcylation of COPII proteins mediates their protein-protein interactions and modulates cargo secretion. In particular, we show that individual O-GlcNAcylation sites of SEC23A, an essential COPII component, are required for its function in human cells and vertebrate development, because mutation of these sites impairs SEC23A-dependent in vivo collagen trafficking and skeletogenesis in a zebrafish model of CLSD. Our results indicate that O-GlcNAc is a conserved and critical regulatory modification in the vertebrate COPII-dependent trafficking pathway.

摘要

COPII包被复合体介导从内质网的分泌货物运输,是亚细胞蛋白质靶向的关键控制点。由于错误定位的蛋白质无法发挥功能,COPII介导的蛋白质分选对于建立和维持正常的细胞和组织稳态至关重要。事实上,COPII基因的突变会导致一系列人类疾病,包括颅-晶状体-缝合发育异常(CLSD),其特征是胶原蛋白运输缺陷、颅面异常和骨骼畸形。需要详细了解COPII途径,以了解其在正常细胞生理学中的作用,并设计出针对其被破坏的疾病的新治疗方法。然而,关于脊椎动物如何响应发育、代谢或病理信号动态调节COPII活性,人们知之甚少。几种COPII蛋白被O-连接的β-N-乙酰葡糖胺(O-GlcNAc)修饰,这是一种细胞内蛋白质糖基化的动态形式,但这些修饰的生化和功能影响仍不清楚。在这里,我们结合化学、生化、细胞和遗传学方法,证明COPII蛋白的位点特异性O-GlcNAcylation介导它们的蛋白质-蛋白质相互作用并调节货物分泌。特别是,我们表明,SEC23A(一种必需的COPII成分)的单个O-GlcNAcylation位点在人类细胞和脊椎动物发育中对其功能是必需的,因为这些位点的突变会损害CLSD斑马鱼模型中SEC23A依赖的体内胶原蛋白运输和骨骼发生。我们的结果表明,O-GlcNAc是脊椎动物COPII依赖运输途径中一种保守且关键的调节修饰。

相似文献

1
Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway.
Biochemistry. 2018 Jan 9;57(1):91-107. doi: 10.1021/acs.biochem.7b00870. Epub 2017 Dec 15.
2
Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation.
Nat Genet. 2006 Oct;38(10):1198-203. doi: 10.1038/ng1880. Epub 2006 Sep 17.
4
The genetic basis of a craniofacial disease provides insight into COPII coat assembly.
Dev Cell. 2007 Nov;13(5):623-634. doi: 10.1016/j.devcel.2007.10.005.
7
Evidence for nutrient-dependent regulation of the COPII coat by O-GlcNAcylation.
Glycobiology. 2021 Sep 20;31(9):1102-1120. doi: 10.1093/glycob/cwab055.
8
Ubiquitin-dependent regulation of COPII coat size and function.
Nature. 2012 Feb 22;482(7386):495-500. doi: 10.1038/nature10822.
9
The [corrected] SEC23-SEC31 [corrected] interface plays critical role for export of procollagen from the endoplasmic reticulum.
J Biol Chem. 2012 Mar 23;287(13):10134-10144. doi: 10.1074/jbc.M111.283382. Epub 2012 Feb 1.
10
Amyloid beta regulates ER exit sites formation through O-GlcNAcylation triggered by disrupted calcium homeostasis.
Biol Cell. 2020 Dec;112(12):439-451. doi: 10.1111/boc.201900062. Epub 2020 Oct 25.

引用本文的文献

2
Dynamic regulation of Sec24C by phosphorylation and O-GlcNAcylation during cell cycle progression.
J Biol Chem. 2025 Jul 3;301(8):110456. doi: 10.1016/j.jbc.2025.110456.
3
Evidence for Functional Regulation of the KLHL3/WNK Pathway by O-GlcNAcylation.
bioRxiv. 2025 Feb 27:2025.02.27.640596. doi: 10.1101/2025.02.27.640596.
4
Photocrosslinking and capture for the analysis of carbohydrate-dependent interactions.
Bioorg Med Chem Lett. 2025 Mar 1;117:130077. doi: 10.1016/j.bmcl.2024.130077. Epub 2024 Dec 20.
5
O-GlcNAcylation modulates expression and abundance of N-glycosylation machinery in an inherited glycosylation disorder.
Cell Rep. 2024 Nov 26;43(11):114976. doi: 10.1016/j.celrep.2024.114976. Epub 2024 Nov 18.
6
Neuronal activity-driven O-GlcNAcylation promotes mitochondrial plasticity.
Dev Cell. 2024 Aug 19;59(16):2143-2157.e9. doi: 10.1016/j.devcel.2024.05.008. Epub 2024 Jun 5.
7
Loss of hepatic VMP1 trapped VLDL in the bilayer of endoplasmic reticulum membrane.
Liver Res. 2023 Jun;7(2):161-163. doi: 10.1016/j.livres.2023.04.001. Epub 2023 May 3.
9
-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells.
Cells. 2023 May 15;12(10):1396. doi: 10.3390/cells12101396.
10
Pancreatic beta cell ER export in health and diabetes.
Front Endocrinol (Lausanne). 2023 Apr 21;14:1155779. doi: 10.3389/fendo.2023.1155779. eCollection 2023.

本文引用的文献

1
Regulation of the CUL3 Ubiquitin Ligase by a Calcium-Dependent Co-adaptor.
Cell. 2016 Oct 6;167(2):525-538.e14. doi: 10.1016/j.cell.2016.09.026.
2
Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress.
J Proteome Res. 2016 Dec 2;15(12):4318-4336. doi: 10.1021/acs.jproteome.6b00369. Epub 2016 Oct 14.
4
Cargo Capture and Bulk Flow in the Early Secretory Pathway.
Annu Rev Cell Dev Biol. 2016 Oct 6;32:197-222. doi: 10.1146/annurev-cellbio-111315-125016. Epub 2016 Jun 8.
7
Mutations in SEC24D cause autosomal recessive osteogenesis imperfecta.
Clin Genet. 2016 Apr;89(4):517-519. doi: 10.1111/cge.12678. Epub 2015 Oct 14.
8
TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export.
Mol Cell. 2015 Oct 1;60(1):89-104. doi: 10.1016/j.molcel.2015.09.010.
9
The pathway of collagen secretion.
Annu Rev Cell Dev Biol. 2015;31:109-24. doi: 10.1146/annurev-cellbio-100913-013002. Epub 2015 Sep 29.
10
The ImageJ ecosystem: An open platform for biomedical image analysis.
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29. doi: 10.1002/mrd.22489. Epub 2015 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验