Suppr超能文献

溶剂和温度对电子烟气溶胶中自由基形成的影响。

Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.

机构信息

Department of Food Science, College of Agricultural Sciences, Pennsylvania State University , University Park, Pennsylvania 16802, United States.

Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States.

出版信息

Chem Res Toxicol. 2018 Jan 16;31(1):4-12. doi: 10.1021/acs.chemrestox.7b00116. Epub 2017 Dec 8.

Abstract

The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be designed to minimize exposure to these potentially harmful products.

摘要

电子烟市场不断发展,给分析和描述其产生的有害产品带来了挑战。我们之前曾报道过,电子烟气溶胶可以产生高水平的活性自由基;然而,目前只有少数数据可以描述这些潜在有害氧化剂的产生情况。因此,我们对影响电子烟产生自由基的不同参数进行了详细分析。我们使用了温度控制的电子烟设备和一种新颖的机制,可靠地模拟了电子烟的使用条件,包括线圈激活和抽吸气流,分析了温度、功率和电子烟液中丙二醇(PG)和甘油(GLY)溶剂组成对自由基产生的影响。电子烟气溶胶中的自由基通过电子顺磁共振进行自旋捕获和分析。自由基的产生呈温度依赖性增加,在恒温条件下,温度从 100°C 增加到 300°C 时,几乎增加了两倍。在恒定功率下,自由基的产生增加幅度更大,从 10 W 增加到 50 W 时,由于与恒温条件相比线圈温度更高,增加了近两倍。电子烟液 PG 含量也对自由基的产生有很大影响,PG:GLY 比例从 0:100 增加到 100:0 时,自由基的产生几乎增加了三倍。PG 含量的增加也与生物相关脂质的气溶胶诱导氧化增加有关。这些结果表明,电子烟气溶胶中活性自由基的产生高度依赖溶剂,并随温度升高而增加。在较高温度下,自由基的产生在一定程度上取决于气溶胶的产生;然而,尽管气溶胶的产生有限,但仍观察到≥100°C 时自由基水平异常高。总的来说,这些发现表明可以设计电子烟来尽量减少这些潜在有害产品的暴露。

相似文献

1
Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.
Chem Res Toxicol. 2018 Jan 16;31(1):4-12. doi: 10.1021/acs.chemrestox.7b00116. Epub 2017 Dec 8.
2
Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.
Free Radic Biol Med. 2018 May 20;120:72-79. doi: 10.1016/j.freeradbiomed.2018.03.020. Epub 2018 Mar 13.
3
Solvent Chemistry in the Electronic Cigarette Reaction Vessel.
Sci Rep. 2017 Feb 14;7:42549. doi: 10.1038/srep42549.
4
Impact of e-Liquid Composition, Coil Temperature, and Puff Topography on the Aerosol Chemistry of Electronic Cigarettes.
Chem Res Toxicol. 2021 Jun 21;34(6):1640-1654. doi: 10.1021/acs.chemrestox.1c00070. Epub 2021 May 5.
6
Highly reactive free radicals in electronic cigarette aerosols.
Chem Res Toxicol. 2015 Sep 21;28(9):1675-7. doi: 10.1021/acs.chemrestox.5b00220. Epub 2015 Aug 7.
7
Free Radical, Carbonyl, and Nicotine Levels Produced by Juul Electronic Cigarettes.
Nicotine Tob Res. 2019 Aug 19;21(9):1274-1278. doi: 10.1093/ntr/nty221.
8
Comparison of Free Radical Levels in the Aerosol from Conventional Cigarettes, Electronic Cigarettes, and Heat-Not-Burn Tobacco Products.
Chem Res Toxicol. 2019 Jun 17;32(6):1289-1298. doi: 10.1021/acs.chemrestox.9b00085. Epub 2019 Apr 12.
10
Nicotine delivery from the refill liquid to the aerosol via high-power e-cigarette device.
Sci Rep. 2017 Jun 1;7(1):2592. doi: 10.1038/s41598-017-03008-0.

引用本文的文献

1
Short-Term and Long-Term Effects of Electronic Cigarettes on Mouse Lungs Following Nose-Only Exposures.
Chem Res Toxicol. 2025 Jun 16;38(6):1019-1036. doi: 10.1021/acs.chemrestox.4c00525. Epub 2025 May 22.
2
Altered uterine artery protein signature and function following E-cigarette exposure in pregnancy.
Am J Transl Res. 2025 Mar 15;17(3):1662-1678. doi: 10.62347/KEWQ6629. eCollection 2025.
3
Pregnancy and Postpartum Effects of Electronic Cigarettes on Maternal Health and Vascular Function in the Fourth Trimester.
Cardiovasc Toxicol. 2025 Mar;25(3):325-340. doi: 10.1007/s12012-025-09961-x. Epub 2025 Jan 22.
4
Free Radicals in Little Cigar Mainstream Smoke and the Potential Influence of Flavoring Chemicals on Free Radical Production.
Chem Res Toxicol. 2024 Jul 15;37(7):1121-1128. doi: 10.1021/acs.chemrestox.4c00044. Epub 2024 Jul 2.
7
Does vaping increase the likelihood of SARS-CoV-2 infection? Paradoxically yes and no.
Am J Physiol Lung Cell Mol Physiol. 2024 Feb 1;326(2):L175-L189. doi: 10.1152/ajplung.00300.2022. Epub 2023 Dec 26.
8
Vaping, Environmental Toxicants Exposure, and Lung Cancer Risk.
Cancers (Basel). 2023 Sep 12;15(18):4525. doi: 10.3390/cancers15184525.
10

本文引用的文献

1
Variation in Free Radical Yields from U.S. Marketed Cigarettes.
Chem Res Toxicol. 2017 Apr 17;30(4):1038-1045. doi: 10.1021/acs.chemrestox.6b00359. Epub 2017 Mar 20.
2
Diffusive confinement of free radical intermediates in the OH radical oxidation of semisolid aerosols.
Phys Chem Chem Phys. 2017 Mar 1;19(9):6814-6830. doi: 10.1039/c7cp00696a.
3
Solvent Chemistry in the Electronic Cigarette Reaction Vessel.
Sci Rep. 2017 Feb 14;7:42549. doi: 10.1038/srep42549.
4
A Device-Independent Evaluation of Carbonyl Emissions from Heated Electronic Cigarette Solvents.
PLoS One. 2017 Jan 11;12(1):e0169811. doi: 10.1371/journal.pone.0169811. eCollection 2017.
7
Acute Impact of Tobacco vs Electronic Cigarette Smoking on Oxidative Stress and Vascular Function.
Chest. 2016 Sep;150(3):606-12. doi: 10.1016/j.chest.2016.04.012. Epub 2016 Apr 22.
9
Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols.
Regul Toxicol Pharmacol. 2016 Mar;75:58-65. doi: 10.1016/j.yrtph.2015.12.019. Epub 2015 Dec 29.
10
Highly reactive free radicals in electronic cigarette aerosols.
Chem Res Toxicol. 2015 Sep 21;28(9):1675-7. doi: 10.1021/acs.chemrestox.5b00220. Epub 2015 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验