Suppr超能文献

会议报告:基于组织的图像分析

Meeting Report: Tissue-based Image Analysis.

作者信息

Saravanan Chandra, Schumacher Vanessa, Brown Danielle, Dunstan Robert, Galarneau Jean-Rene, Odin Marielle, Mishra Sasmita

机构信息

1 Translational Medicine: Preclinical Safety, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA.

2 Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland.

出版信息

Toxicol Pathol. 2017 Oct;45(7):983-1003. doi: 10.1177/0192623317737468.

Abstract

Quantitative image analysis (IA) is a rapidly evolving area of digital pathology. Although not a new concept, the quantification of histological features on photomicrographs used to be cumbersome, resource-intensive, and limited to specialists and specialized laboratories. Recent technological advances like highly efficient automated whole slide digitizer (scanner) systems, innovative IA platforms, and the emergence of pathologist-friendly image annotation and analysis systems mean that quantification of features on histological digital images will become increasingly prominent in pathologists' daily professional lives. The added value of quantitative IA in pathology includes confirmation of equivocal findings noted by a pathologist, increasing the sensitivity of feature detection, quantification of signal intensity, and improving efficiency. There is no denying that quantitative IA is part of the future of pathology; however, there are also several potential pitfalls when trying to estimate volumetric features from limited 2-dimensional sections. This continuing education session on quantitative IA offered a broad overview of the field; a hands-on toxicologic pathologist experience with IA principles, tools, and workflows; a discussion on how to apply basic stereology principles in order to minimize bias in IA; and finally, a reflection on the future of IA in the toxicologic pathology field.

摘要

定量图像分析(IA)是数字病理学中一个快速发展的领域。尽管这不是一个新概念,但过去对显微照片上组织学特征的量化既繁琐、资源消耗大,且仅限于专家和专业实验室。近期的技术进步,如高效的自动化全玻片数字化仪(扫描仪)系统、创新的IA平台以及便于病理学家使用的图像标注和分析系统的出现,意味着组织学数字图像上特征的量化在病理学家的日常职业生涯中将变得越来越重要。定量IA在病理学中的附加价值包括确认病理学家注意到的模糊发现、提高特征检测的灵敏度、信号强度的量化以及提高效率。不可否认,定量IA是病理学未来的一部分;然而,从有限的二维切片估计体积特征时也存在一些潜在的陷阱。本次关于定量IA的继续教育课程全面概述了该领域;提供了毒理病理学家在IA原理、工具和工作流程方面的实践经验;讨论了如何应用基本的体视学原理以尽量减少IA中的偏差;最后,对IA在毒理病理学领域的未来进行了思考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验