Suppr超能文献

基于智能手机的目标检测模型PlantVillage Nuru在识别木薯病毒病(木薯普通花叶病和木薯褐色条纹病)叶部症状方面的准确性。

Accuracy of a Smartphone-Based Object Detection Model, PlantVillage Nuru, in Identifying the Foliar Symptoms of the Viral Diseases of Cassava-CMD and CBSD.

作者信息

Mrisho Latifa M, Mbilinyi Neema A, Ndalahwa Mathias, Ramcharan Amanda M, Kehs Annalyse K, McCloskey Peter C, Murithi Harun, Hughes David P, Legg James P

机构信息

Virus and Vector Ecology Group, International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania.

Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania.

出版信息

Front Plant Sci. 2020 Dec 18;11:590889. doi: 10.3389/fpls.2020.590889. eCollection 2020.

Abstract

Nuru is a deep learning object detection model for diagnosing plant diseases and pests developed as a public good by PlantVillage (Penn State University), FAO, IITA, CIMMYT, and others. It provides a simple, inexpensive and robust means of conducting in-field diagnosis without requiring an internet connection. Diagnostic tools that do not require the internet are critical for rural settings, especially in Africa where internet penetration is very low. An investigation was conducted in East Africa to evaluate the effectiveness of Nuru as a diagnostic tool by comparing the ability of Nuru, cassava experts (researchers trained on cassava pests and diseases), agricultural extension officers and farmers to correctly identify symptoms of cassava mosaic disease (CMD), cassava brown streak disease (CBSD) and the damage caused by cassava green mites (CGM). The diagnosis capability of Nuru and that of the assessed individuals was determined by inspecting cassava plants and by using the cassava symptom recognition assessment tool (CaSRAT) to score images of cassava leaves, based on the symptoms present. Nuru could diagnose symptoms of cassava diseases at a higher accuracy (65% in 2020) than the agricultural extension agents (40-58%) and farmers (18-31%). Nuru's accuracy in diagnosing cassava disease and pest symptoms, in the field, was enhanced significantly by increasing the number of leaves assessed to six leaves per plant (74-88%). Two weeks of Nuru practical use provided a slight increase in the diagnostic skill of extension workers, suggesting that a longer duration of field experience with Nuru might result in significant improvements. Overall, these findings suggest that Nuru can be an effective tool for in-field diagnosis of cassava diseases and has the potential to be a quick and cost-effective means of disseminating knowledge from researchers to agricultural extension agents and farmers, particularly on the identification of disease symptoms and their management practices.

摘要

努鲁(Nuru)是一种用于诊断植物病虫害的深度学习目标检测模型,由植物村(宾夕法尼亚州立大学)、联合国粮食及农业组织(FAO)、国际热带农业研究所(IITA)、国际玉米小麦改良中心(CIMMYT)等机构作为公益项目开发。它提供了一种简单、廉价且强大的实地诊断方法,无需网络连接。无需网络的诊断工具对于农村地区至关重要,尤其是在互联网普及率极低的非洲。在东非进行了一项调查,通过比较努鲁、木薯专家(接受过木薯病虫害培训的研究人员)、农业推广人员和农民正确识别木薯花叶病(CMD)、木薯褐色条纹病(CBSD)以及木薯绿螨(CGM)造成的损害症状的能力,来评估努鲁作为诊断工具的有效性。通过检查木薯植株并使用木薯症状识别评估工具(CaSRAT)根据叶片上出现的症状对木薯叶片图像进行评分,确定了努鲁和被评估个体的诊断能力。与农业推广人员(40%-58%)和农民(18%-31%)相比,努鲁在2020年诊断木薯疾病症状的准确率更高(65%)。通过将每株植物评估的叶片数量增加到六片,努鲁在实地诊断木薯病虫害症状的准确率显著提高(74%-88%)。两周的努鲁实际使用使推广人员的诊断技能略有提高,这表明更长时间使用努鲁进行实地操作可能会带来显著改善。总体而言,这些发现表明努鲁可以成为木薯疾病实地诊断的有效工具,并且有可能成为一种快速且经济高效的方式,将知识从研究人员传播给农业推广人员和农民,特别是在疾病症状识别及其管理实践方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc7/7775399/ebe91162d5e9/fpls-11-590889-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验